期刊文献+

一种基于计算机视觉的铁轨扣件缺失检测方法 被引量:4

A Fastening Missing Detecting Technique Based on Computer Vision
下载PDF
导出
摘要 针对传统扣件检测方法式效率低、可靠性差,不能满足现代铁路检修的需要,提出了一种基于计算机视觉的扣件缺失自动检测方法。在对灰度图像进行Canny边缘检测处理后采用十字交叉定位法对扣件位置进行定位,得到120×200像素的扣件区域,并提取扣件图像的20个边缘特征值;最后,利用模糊C均值聚类算法对这两类的特征量进行聚类分析,通过计算待诊断对象与标准模式的隶属度实现对扣件状态的分类。应用验证表明:采用的图像处理方法和识别分类算法能够有效检出轨道扣件缺失,检测速度快,鲁棒性好,检出率达96%。 The traditional fastener detection methods are inefficient and unreliable,can not meet the needs of the modern railway maintenance.This paper proposes a vision-based technique for detecting rail fastening automatically.First,a criss-crossing localization method was proposed to position the fastener for the canny edge processing gray images,and the edge characteristic information of fastener was extracted.Finally,fuzzy C-means clustering algorithm was used to cluster the extracted features,fastener missing detection can be realized by calculating the membership between the unknown samples and the standard modes of fastener.The experiment showed that this image processing and classifying algorithm can realize the automatic detection of missing fastener effectively;the detection rate is above 96%.
作者 杨樊 陈建政 吴梦 YANG Fan, CHEN Jian-zheng, WU Meng (Traction Power State Key Laboratory, Southwest Jiaotong University, Chengdu 610031, China )
出处 《电脑知识与技术》 2014年第4期2367-2370,共4页 Computer Knowledge and Technology
基金 国家科技支撑计划(2009BAG12A01)
关键词 扣件缺失检测 图像处理 CANNY算子 模糊C均值聚类 fastening missing detecting image processing canny algorithm fuzzy C-means clustering
  • 相关文献

参考文献10

  • 1Singh M, Singh S, Jaiswal J, et al. Autonomous rail track inspection using vision based system[C]//Computational Intelligence for Homeland Security and Personal Safety, Proceedings of the 2006 IEEE International Conference on. IEEE, 2006: 56-59.
  • 2Sholl H, Am,nar R, Greenshields I, et al. Application of Computing Analysis to Real-Time Railroad Track lnspeclion[C]//Automation Congress, 2006. WAC'06. World. IEEE, 2006: 1-6.
  • 3Killing J, Surgenor B W, Mechefske C K. A machine vision system for the delection of missing fasteners on steel stampings[J]. The In- ternational Journal Of Advanced Manufacturing Technology, 2009.41(7-8): 808-819.
  • 4De Ruvo P, Distante A, Stella E, et al. A GPU-based vision svstem for real time deteclion of fastening elements in railway inspection [C]//lmage Processing (ICIP). 2009 16111 IEEE International Conference on. IEEE. 2009: 2333-2336.
  • 5Deutschl E, Gasser C, Niel A. el al. Defect detection on rail surfaces bv a vision based system[C]//lntelligent Vehicles Symposium, 2004 IEEE. IEEE, 2004:507-511.
  • 6Marino F, Distanle A. Mazzeo P L. et al. A real-lime visual inspeelion system for railway maintenance: automatic hexagonal-headed bolts detection[J]. Syslems, Man, and Cybernelics, Part C: Applications and Reviews, IEEE Transactions on, 2007, 37(3): 418-428.
  • 7王凌,张冰,陈锡爱.基于计算机视觉的钢轨扣件螺母缺失检测系统[J].计算机工程与设计,2011,32(12):4147-4150. 被引量:23
  • 8Canny J. A computational approach to edge deteclionlJl. Paitern Analysis and Machine Intelligence. 1EEE Transactions on. 1986 (6) 679-698.
  • 9Pal N R, Bezdek J C. On cluster validity for the fuzzy c-means model[J]. Fuzzy Systems, IEEE Transactions on, 1995, 3(3): 370-379.
  • 10Miyaulolo S. Ichihashi H. Honda K.Algorithms for fuzzy cluslering: methods in c-lneaus clustering with applications[M]. Springer, 2008.

二级参考文献13

  • 1王筱艳,汪天富,李德玉,林江莉.一种改进的各向异性高斯滤波算法[J].西南民族大学学报(自然科学版),2007,33(1):120-123. 被引量:7
  • 2严健.线路养护维修存在的问题及其解决办法[J].中国铁路,2004(11):15-19. 被引量:22
  • 3孙韶峰.德国铁路基础设施的管理与维修[J].中国铁路,2005(12):29-32. 被引量:11
  • 4周金和,彭福堂.一种有选择的图像灰度化方法[J].计算机工程,2006,32(20):198-200. 被引量:36
  • 5刘瑞祯,于仕琪.OpenCV教程一基础篇[M].北京:北京航空航天大学出版社,2007.
  • 6宋友富.铁路轨道[J].中国铁路出版社,2006(6):18-21.
  • 7Ruvo G D,Ruvo P D,Marino F, et al.A FPGA-based architecture for automatic hexagonal bolts detection in railway maintenance [C].Proceedings of the 7th International Workshop on Computer Architecture for Machine Perception,2005:219-224.
  • 8Marino F, Distante A,Mazzeo P L,et al.A real time visual inspec- tion system for railway maintenance:automatic hexagonal headed bolts detection[J].IEEE Transactions on Systems Man and Cy- bernetics Part C,2007,37(3):418-428.
  • 9Yella S, Dougherty M, Gupta N K. Condition monitoring of wooden railway sleepers [J]. Transportation Research Part C, Emerging Technologies,2008,17( 1):38-55.
  • 10Zhou Xiao-fei,Zhang ShiPeng,Nie Guangli,et al,A new classifi- cation method for PCA-based face recognition[C].International Conference on Business Intelligence and Financial Engineering, 2009:445-449.

共引文献22

同被引文献22

引证文献4

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部