期刊文献+

单高斯与混合高斯相结合的运动目标检测 被引量:4

MovingTarget Detection Based on Combination of Single Gaussian Model and Gaussian Mixture Model
下载PDF
导出
摘要 论文提出了一种将单高斯建模法与混合高斯建模法相结合的运动目标检测方法。针对实际场景中的部分动态背景会给运动目标检测带来很大干扰,混合高斯建模法提取目标不完整、实时性差的问题,结合单高斯建模法处理的优点,将图像自动分割为静态背景区域和动态背景区域,分别检测,并将得到的运动目标检测图像进行拼接及后续处理。实验结果表明,用该方法提取目标完整度高,实时性好,对动态背景干扰不敏感,具有较好的鲁棒性。 This paper presents a moving target detection method based on combination of single Gaussian model and Gaussian mixture model. In practical situations, part of the dynamic background will bring a lot of interference to moving target detection, and traditional Gaussian mixture modeling method can't extract the complete target with poor real-time. Considering the advantages of treatment with single Gaussian model, the image is cut into static and dynamic background area which is processed with single Gaussian modeling method and Gaussian mixture modeling method respectively. After that, the moving target image stitching is gotten and some follow-up treatment treatments are done. Experimental results show that using this method can extract full target and have high real-time, it is insensitive to dynamic background interference, and has good robustness.
作者 陆彬 王敏
出处 《计算机与数字工程》 2014年第5期791-795,共5页 Computer & Digital Engineering
基金 国家自然科学基金项目(编号:61370180)资助
关键词 运动目标检测 单高斯模型 混合高斯模型 动态背景 图像分割 moving target detection, single gaussian model, gaussian mixture model, dynamic background, image segmentation
  • 相关文献

参考文献11

二级参考文献60

  • 1唐俐,龙熙华.运动目标检测的三帧差分和背景消减研究[J].科技信息,2008(28). 被引量:3
  • 2王华伟,李翠华,施华,韦凤梅.基于HSV空间和一阶梯度的阴影剪除算法[J].计算机工程与应用,2005,41(8):43-44. 被引量:6
  • 3邵文坤,黄爱民,韦庆.目标跟踪方法综述[J].影像技术,2006,18(1):17-20. 被引量:24
  • 4刘洁,张东来.关于自适应高斯混合背景模型的更新算法的研究[J].微计算机信息,2006(08S):241-242. 被引量:23
  • 5CUCCHIARA R, PICCARDI M, PRATI A. Detecting moving objects, ghosts, and shadows in video streams[ EB/OL]. [ 2009 - 05 - 15]. http://www, cs. utsa. edu/-qitian/seminar/Fall04/video/ 01233909. pdf.
  • 6LOB P L, VELASTIN S A. Automatic congestion detection system for underground platforms[ C]// Proceedings of 2001 International Symposium on Intelligent Multimedia Video and Speech Processing. New York: IEEE, 2001:158 - 161.
  • 7RIDDER C, MUNKELT O, KIRCHNER H. Adaptive background estimation and foreground detection using Kalman-fihering [ EB/ OL]. http://serdis, dis. ulpgc. es/-ii-vpc/MatDocerr/notas_practicas/TC_2/ICRAM-95-Ridder-etal_ps.
  • 8WREN C R, AZARBAYEJANI A, DARRELL A, et al. Pfinder: Real-time tracking of the human body [ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(7) : 780 -785.
  • 9STAUFFER C, GRIMSON W E L. Adaptive background mixture models for real-time tracking[ EB/OL]. [ 2009 - 04 - 05] http:// www. ai. mit. edu/projects/vsam/Publications/stauffer_ cvpr98 _ track, pdf.
  • 10KAEWTRAKULPONG P , BOWDEN R . An improved adaptive background mixture model for real-time tracking with shadow detection[ EB/OL]. [ 2009 - 05 - 10]. http://personal, ee. surrey, ac. uk/Personal/R. Bowden/publications/avbs01/avbs01. pdf.

共引文献122

同被引文献30

引证文献4

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部