期刊文献+

不同特征向量下基于SVM的短期风速预测 被引量:6

SHORT-TERM WIND SPEED FORECASTING BASED ON SVM UNDER DIFFERENT FEATURE VECTORS
原文传递
导出
摘要 选取广东省某风电场的测风数据,运用支持向量机(SVM)的方法对其进行短期风速预测。为提高预测的精度,通过LIBSVM回归机的交叉验证函数确定最优参数,建立4种不同输入特征向量组合(风速序列、风速和风向、风速和气压、风速风向和气压)的模型,分别预测该风场的短期风速,并对4种模型的预测误差进行分析和比较。实验结果表明:气压不宜作为输入特征向量;选用风速和风向作为输入特征向量的模型,预测效果最理想,其平均绝对百分比误差为12.8%。 The problem of short-term wind speed prediction is addressed based on support vector machine (SVM) using the data from a wind farm in Guangdong Province. In order to improve forecast accuracy, the cross- validation method of the LIBSVM software was adopted to determine the optimal parameters, and 4 types of models with 4 different feature vectors (wind speed, wind speed + wind direction, wind speed + air pressure, wind speed + wind direction + air pressure) were created to predict short-term wind speed of the wind field respectively, and the prediction errors were analyzed and compared. The experimental results showed that the pressure is not appropriate to be selected as feature variable, and the model with feature vectors of wind speed and wind direction takes the most ideal effect with the average absolute percentage error 12. 8%.
机构地区 中山大学工学院
出处 《太阳能学报》 EI CAS CSCD 北大核心 2014年第5期866-871,共6页 Acta Energiae Solaris Sinica
关键词 短期风速预测 风力发电 支持向量机(SVM) 输入特征向量 short-term wind speed forecasting wind power generation support vector machine (SVM) input feature vector
  • 相关文献

参考文献13

  • 1Bernhard L, Kurt R, Bernhard E, et al. Wind powerprediction in Germany-recent advances and future challenges [ A ]. European Wind Energy Conference [C], Athens, 2006.
  • 2Abdel-Aal R E, Elhadidy M A, Shaahid S M. Modeling and forecasting the mean hourly wind speed time series using GMDH-based abductive networks [ J ]. Renewable Energy, 2009, 34(7) : 1686-1699.
  • 3Barthelmie R J, Murray F, Pryor S C. The economic benefit of short-term forecasting for wind energy in the UK electricity market [ J]. Energy Policy, 2008, 36 (5) : 1687-1696.
  • 4Andrew Kusiak, Zheng Haiyang, Soog Zhe. Short- term prediction of wind farm power: A data mining approach [ J ]. IEEE Transactions on Energy Conversion, 2009, 24(1) : 125-136.
  • 5潘迪夫,刘辉,李燕飞.基于时间序列分析和卡尔曼滤波算法的风电场风速预测优化模型[J].电网技术,2008,32(7):82-86. 被引量:221
  • 6梁岚珍,邵璠.时序神经网络算法的短期风速预测研究[J].控制工程,2011,18(1):43-45. 被引量:9
  • 7Erasmo Cadenas, Wilfrido Rivera. Short term wind speed forecasting in La Venta, Oaxaca, Mexico, using artificial neural networks [ J ]. Renewable Energy, 2009, 34( 1 ) : 274-276.
  • 8Damousis I G, Alexiadis M C, Theocharis J B, et al. A fuzzy model for wind speed prediction and power generation in wind parks using spatial correlation [ J ]. Energy Conversion, 2004, 19(2) : 352-361.
  • 9Barbounis T G, Theocharis J B. Locally recurrent neural networks for wind speed prediction using spatial correlation[ J]. Information Sciences, 2007, 177 (24) : 5775-5797.
  • 10戚双斌,王维庆,张新燕.基于支持向量机的风速与风功率预测方法研究[J].华东电力,2009,37(9):1600-1603. 被引量:44

二级参考文献41

共引文献311

同被引文献47

引证文献6

二级引证文献63

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部