期刊文献+

云计算中基于能耗优化的虚拟机多目标放置算法 被引量:10

Virtual Machine Multi-objective Placement Algorithm Based on Optimization of Energy Consumption in the Cloud Computing
下载PDF
导出
摘要 如何将虚拟机放置部署到合适的物理结点上是云计算提高系统性能,兼顾节能减排的关键技术之一.首先研究和建立虚拟机放置模型,为能耗优化提供基础,综合考虑应用系统性能要求、资源开销、能源消耗、虚拟机迁移等因素,将资源控制和能耗控制结合起来,形成虚拟机放置能耗优化模型,在此基础上提出基于量子多目标进化的虚拟机放置算法(EAPC),并采用二级递阶分解结构优化求解过程,实现目标的全局最优化.对比实验结果表明算法能有效地减少能源消耗,同时能较好的控制资源开销,达到节能减排,绿色计算的目的,具有较强的理论和现实意义. In cloud computing, how to place the virtual machine deployment on physical node is one of the key technology to improve system performance and energy saving. This research provided a basis for energy consumption optimization by creating a virtual machine placing model; and by comprehensive consideration of the application performance requirements, resource consumption, energy consumption, physical node number and other factors, it is to combine the resource control and power control to form a virtual machine placing model with energy optimization; then based on this model, by using EAPC and employing two hierarchical decomposition structure to optimize the solution process and achieve an optimized goal. The experiment results show that the algorithm can effectively reduce energy consumption and can control the spending of resource to achieve the purpose of saving energy and green computing. Thus the research is of important theoretical and practical significance.
出处 《小型微型计算机系统》 CSCD 北大核心 2014年第6期1304-1308,共5页 Journal of Chinese Computer Systems
基金 国家自然科学基金项目(61272382)资助 广东省科技计划项目(2012B010100037)资助 广东高校石油化工故障诊断与信息化控制工程技术开发中心开放基金项目(512016)资助 茂名市科技计划项目(20120263)资助
关键词 云计算 虚拟机放置 能耗优化 节能减排 cloud computing virtual machines placement energy consumption optimization energy saving
  • 相关文献

参考文献17

  • 1Tian Wen-hong, Zhao Yong. Cloud computing resource scheduling management[M]. Beijing:National Defense Industry Press,2011.
  • 2陈康,郑纬民.云计算:系统实例与研究现状[J].软件学报,2009,20(5):1337-1348. 被引量:1312
  • 3Armbrust M,Fox A,Griffith R, et al. A view of cloud computing [J]. Communication of the ACM,2010,53(4) :50-58.
  • 4Mark Stillwell,David Schanzenbach,Frederic Vivien ,et al. Resource allocation algorithms for virtualized service hosting platforms [ J ]. Journal of Parallel and Distributed Computing ,2010,70(9) :962-974.
  • 5Kong Xiang-zhen,Lin Chuang,Jiang Yi-xin,et al. Efficient dynamic task scheduling in virtualized data centers with fuzzy prediction [J]. Journal of Network and Computer Applications,2011,34(4): 1068-1077.
  • 6Daniel Wameke,Odej Kao. Exploiting dynamic resource allocation for efficient parallel data processing in the cloud[ J]. IEEE Transactions on Parallel and Distributed Systems,2011,22(6) :1045-9219,.
  • 7Hyser C,Mckee B, Gardner R, et al. Autonomic virtual machine placement in the data center[R]. HP Labs Technical Report,2007.
  • 8Xu J, Fortes J. Multi-objective virtual machine placement in virtualized data center environments [ C ]. Proceedings of IEEE/ACM International Conference on Green Computing and Communications, Hang Zhou,2010:179-188.
  • 9Chen M,Zhangy H,Ya-Yunn S,et al. Effective VM sizing in virtualized data centers [ C]. Proceedings of the 12th IFIP/IEEE International Symposium on Integrated Network Management, Dublin, 2011:594-601.
  • 10李强,郝沁汾,肖利民,李舟军.云计算中虚拟机放置的自适应管理与多目标优化[J].计算机学报,2011,34(12):2253-2264. 被引量:123

二级参考文献65

  • 1Sims K. IBM introduces ready-to-use cloud computing collaboration services get clients started with cloud computing. 2007. http://www-03.ibm.com/press/us/en/pressrelease/22613.wss
  • 2Boss G, Malladi P, Quan D, Legregni L, Hall H. Cloud computing. IBM White Paper, 2007. http://download.boulder.ibm.com/ ibmdl/pub/software/dw/wes/hipods/Cloud_computing_wp_final_8Oct.pdf
  • 3Zhang YX, Zhou YZ. 4VP+: A novel meta OS approach for streaming programs in ubiquitous computing. In: Proc. of IEEE the 21st Int'l Conf. on Advanced Information Networking and Applications (AINA 2007). Los Alamitos: IEEE Computer Society, 2007. 394-403.
  • 4Zhang YX, Zhou YZ. Transparent Computing: A new paradigm for pervasive computing. In: Ma JH, Jin H, Yang LT, Tsai JJP, eds. Proc. of the 3rd Int'l Conf. on Ubiquitous Intelligence and Computing (UIC 2006). Berlin, Heidelberg: Springer-Verlag, 2006. 1-11.
  • 5Barroso LA, Dean J, Holzle U. Web search for a planet: The Google cluster architecture. IEEE Micro, 2003,23(2):22-28.
  • 6Brin S, Page L. The anatomy of a large-scale hypertextual Web search engine. Computer Networks, 1998,30(1-7): 107-117.
  • 7Ghemawat S, Gobioff H, Leung ST. The Google file system. In: Proc. of the 19th ACM Symp. on Operating Systems Principles. New York: ACM Press, 2003.29-43.
  • 8Dean J, Ghemawat S. MapReduce: Simplified data processing on large clusters. In: Proc. of the 6th Symp. on Operating System Design and Implementation. Berkeley: USENIX Association, 2004. 137-150.
  • 9Burrows M. The chubby lock service for loosely-coupled distributed systems. In: Proc. of the 7th USENIX Symp. on Operating Systems Design and Implementation. Berkeley: USENIX Association, 2006. 335-350.
  • 10Chang F, Dean J, Ghemawat S, Hsieh WC, Wallach DA, Burrows M, Chandra T, Fikes A, Gruber RE. Bigtable: A distributed storage system for structured data. In: Proc. of the 7th USENIX Symp. on Operating Systems Design and Implementation. Berkeley: USENIX Association, 2006. 205-218.

共引文献1423

同被引文献63

  • 1许力,曾智斌,姚川.云计算环境中虚拟资源分配优化策略研究[J].通信学报,2012,33(S1):9-16. 被引量:26
  • 2田贺喆.数据中心能耗和能效现状[EB/OL].[2015-03-10].http://tech.idcquan.com/pro/63329.shtml.
  • 3Vilaplana J,Mateo J,TeixidóI,et al.An SLA and powersaving scheduling consolidation strategy for shared and heterogeneous clouds[J].The Journal of Supercomputing,2015,71(5):1817-1832.
  • 4Hosseinimotlagh S,Khunjush F,Samadzadeh R.SEATS:smart energy-aware task scheduling in real-time cloud computing[J].The Journal of Supercomputing,2015,71(1):45-66.
  • 5Kusic D,Kephart J O,Hanson J E,et al.Power and performance management of virtualized computing environments via lookahead control[J].Cluster Computing,2009,12(1):1-15.
  • 6Beloglazov A,Abawajy J,Buyya R.Energy-aware resource allocation heuristics for efficient management of data centers for cloud computing[J].Future Generation Computer Systems,2012,28(5):755-768.
  • 7Metropolis N,Rosenbluth A W,Rosenbluth M N,et al.Equation of state calculations by fast computing machines[J].Journal of Chemical Physics,1953,21(6):1087-1092.
  • 8Calheiros R N,Ranjan R,Beloglazov A,et al.CloudSim:a toolkit for modeling and simulation of cloud computing environments and evaluation of resource provisioning algorithms[J].Software:Practice&Experience,2011,41(1).
  • 9Beloglazov A,Buyya R.Optimal online deterministic algorithms and adaptive heuristics for energy and performance efficient dynamic consolidation of virtual machines in cloud data centers[J].Concurrency and Computation:Practice and Experience,2012,24(13):1397-1420.
  • 10张彬彬,罗英伟,汪小林,王振林,孙逸峰,陈昊罡,许卓群,李晓明.虚拟机全系统在线迁移[J].电子学报,2009,37(4):894-899. 被引量:51

引证文献10

二级引证文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部