期刊文献+

基于无损卡尔曼滤波的锂离子电池组SOC估计 被引量:4

State of charge estimation of lithium-ion battery based on unscented Kalman filter
下载PDF
导出
摘要 锂离子电池组容量和内部参数随温度变化明显,在不同温度下准确估计电池电荷状态(state of charge,SOC)是电动汽车电池管理系统研究的关键技术。基于Thevenin模型,采用无损卡尔曼滤波(unscented Kalman filtering,UKF)实现不同温度和不同放电电流条件下对锂离子电池组SOC的估计。实验研究表明,UKF算法适应不同放电电流下的电池SOC估计。随着温度降低,虽然UKF方法对锂离子电池组SOC估计的收敛速度变慢,但对初始误差有较强的修正作用,且有较高的稳态精度。因此,UKF方法适合不同温度和放电电流下对锂离子电池组SOC的估计。 The capacity of lithium-ion battery and internal parameters obviously vary with temperature, so state of charge of cell exact estimation at various temperatures is the key technology of the battery management system in the electric vehicle. Based on the Thevenin model, using unscented kalman filter(UKF), the state of charge(SOC)estimation of Li-ion battery at various temperatures and discharge currents was estimated. Experimental study showes that UKF algorithm was adapted to the SOC estimation of Li-ion battery at various discharge currents. With the temperature decreasing, though the UKF convergence rate of estimation of Li-ion battery SOC becomes slow,there is strong correct function to initial error, and steady state accuracy is high. Therefore, UKF algorithm is suitable for the estimation of Li-ion battery SOC at various temperatures and discharge currents.
作者 沈艳霞 周园
出处 《电源技术》 CAS CSCD 北大核心 2014年第5期828-831,共4页 Chinese Journal of Power Sources
基金 国家自然科学基金(61104183) 教育部新世纪优秀人才支持计划(NCET-10-0437)
关键词 锂离子电池组 温度 电荷状态 无损卡尔曼滤波 lithium-ion battery temperature state of charge unscented Kalman filter
  • 相关文献

参考文献10

二级参考文献65

共引文献326

同被引文献44

引证文献4

二级引证文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部