期刊文献+

基于回声状态网络的BOD在线软测量模型 被引量:1

Online Biochemical Oxygen Demand Soft Measurement Based on Echo State Network
下载PDF
导出
摘要 针对污水处理过程的BOD建模问题,提出了一种基于回声状态网络的BOD在线软测量方法;基于梯度下降规则对回声状态网络的在线学习算法进行了研究;为保证学习算法的收敛性,基于Lyapunov理论对学习率范围进行了确定;实验表明,基于回声状态网络的在线BOD预测方法较常规神经网络预测精度提高约两个数量级,模型的适应性也大幅提高。 In order to solve the modelling problem of biochemical oxygen demand (BOD) in wastewater treatment process, this paper proposes an online BOD predictive method based on echo state network (ESN). The gradient--based rule online algorithm is adopted to train the ESN model. To guarantee the convergence of the online learning algorithm, the range of the learning rate is determined based on Lya- punov theory. The experimental results demonstrate that the BOD prediction precision based on ESN if improved two orders of magnitude than conventional neural networks, and also the flexibility of the model is improved.
作者 刘文波
出处 《计算机测量与控制》 北大核心 2014年第5期1351-1354,共4页 Computer Measurement &Control
关键词 污水处理 BOD 回声状态网络 收敛性 wastewater treatment biochemical oxygen demand echo state network convergence
  • 相关文献

参考文献9

  • 1Dellana S A, West D. Predictive modeling for wastewater applica- tions: Linear and nonlinear approaches [J]. Environmental Model- ling&Software, 2009, 24 (1): 96-106.
  • 2刘载文,崔莉凤,祁国强,侯朝桢,刘太杰.SBR出水BOD值的RBF软测量法[J].中国给水排水,2004,20(5):17-20. 被引量:10
  • 3田奕,乔俊飞.基于遗传算法的BOD神经网络软测量[J].计算机技术与发展,2009,19(3):127-129. 被引量:9
  • 4杨维维,乔俊飞.基于递归高阶神经网络的污水处理系统建模[J].信息与控制,2011,40(5):710-714. 被引量:5
  • 5Jaeger H. The echo state approach to analysing and training recur- rent neural networks [R]. GMD Report German National Research Center for Information Technology, 2001, 12 (8): 1-43.
  • 6Lukochecksevikcius, Jaeger H. Reservoir computing approaches to recurrent neural network training [J]. Computer Science Review, 2009, 3 (3): 127-149.
  • 7Jaeger H. Harnessing Nonlinearity: Predicting Chaotic Systems and Saving Energy in Wireless Communication [J]. Science, 2004. 304 (5667): 78-80.
  • 8Ozturk M C, Xu D G, Principe J C. Analysis and Design of Echo State Networks [J]. Neural Computation, 2007, 19: 111-138.
  • 9孙红,吴钱忠,王晓婉,秦守文,屠佥炜,张建宏,尹鹏鸿.BAF小区生活污水处理智能控制系统应用[J].计算机测量与控制,2013,21(5):1233-1235. 被引量:2

二级参考文献30

  • 1谭文,王耀南.Synchronization of an uncertain chaotic system via recurrent neural networks[J].Chinese Physics B,2005,14(1):72-76. 被引量:2
  • 2于静江,周春晖.过程控制中的软测量技术[J].控制理论与应用,1996,13(2):137-144. 被引量:147
  • 3Whittley D, Starkweather T, Bogart C. Genetic algorithms and neural networks: Optimizing connections and connectivity [J ]. Parallel Compute, 1990,4(3) :347 - 361.
  • 4Gracia M D, Grau P, Huete E, et al. New generic mathematical model for WWTP sludge digesters operating under aerobic and anaerobic conditions: Model building and experimental verifi- cation[J]. Water Research, 2009, 43(18): 4626-4642.
  • 5Civelekoglu G, Yigit N O, Diamadopoulos E, et al. Modelling of COD removal in a biological wastewater treatment plant us- ing adaptive neuro-fuzzy inference system and artificial neural network[J]. Water Science & Technology, 2009, 60(6): 1475- 1487.
  • 6Du H B, Shao H H, Yao P J. Adaptive neural network control for a class of low-triangular-structured nonlinear systems[J]. IEEE Transactions on Neural Networks, 2006, 17(2): 509-514.
  • 7Faur C, Cougnaud A, Dreyfus G, et al. Modelling the break- through of activated carbon filters by pesticides in surface wa- ters with static and recurrent neural networks[J]. Chemical En- gineering Journal, 2008, 145(1): 7-15.
  • 8Thiery F, Grieu S, Traore A. Integration of neural networks in a geographical information system for the monitoring of a catch- ment area[J]. Mathematics and Computers in Simulation, 2008, 76(5): 388-397.
  • 9Yuzgec U. Dynamic neural-network-based model-predictive control of an industrial baker's yeast drying process[J]. IEEE Transactions on Neural Networks, 2008, 19(7): 1231-1242.
  • 10Dellana S A, West D. Predictive modeling for wastewater ap- plications: Linear and nonlinear approaches[J]. Environmental Modelling & Software, 2009, 24(1): 96-106.

共引文献22

同被引文献12

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部