期刊文献+

基于相空间重构的PHM数据处理算法研究 被引量:1

Research on Data Processing of PHM Algorithm Based on Phase Space Reconstruction
下载PDF
导出
摘要 采集数据的非线性特性极大地限制了故障预测与健康管理技术(PHM)在飞机自主保障能力中的应用,提出了一种基于相空间重构的数据处理方法;首先,对PHM技术进行了系统研究,并对数据处理进行了分析;然后,根据数据处理的特点,分别采用自相关法、复自相关法、FNN法和C-C法计算相关的延迟时间及嵌入维数;最后,通过仿真对比分析以上几种方法得到的延迟时间与嵌入维数;结果表明作为一种联合计算延迟时间和嵌入维数的数据处理方法,C-C法可以同时计算延迟时间τ为3和嵌入维数m为6。 For the nonlinear characteristics of data collection, which greatly limit the capability of Prognostics and Health Management (PHM) technology to apply to the self--protection ability of aircraft, a method of data processing based on phase space reconstruction is pro- posed. Firstly, the PHM technology has been systematic studied and its core (data processing) is also analyzed. Secondly, according to the characteristics of the data processing, the delay time and embedding dimension can be calculated using autocorrelation, multiple autocorrela- tion method, FNN method and the C--C method respectively. Lastly, compared with the embedding dimension and delay time through the a- bove method, the simulation results show that as a kind of data processing method for combined calculation, C--C method has higher compu- tational efficiency in the analysis of original data of PHM.
出处 《计算机测量与控制》 北大核心 2014年第5期1484-1486,1529,共4页 Computer Measurement &Control
基金 国家自然科学基金(60974146) 航空科学基金(20100753009)
关键词 采集数据 故障预测与健康管理技术 相空间重构 延迟时间 嵌入维数 data collection prognostics and health management technology phase space reconstruction delay time embedding dimension
  • 相关文献

参考文献8

  • 1Lu K S, Sacks R. Failure prediction for an on-line maintenance system in a passion shock environment [J]. IEEE Transactions on Systems, Man, and Cybernetics, 1979, 9 (6): 356-362.
  • 2Khoshgoftaar T M, Pandya A S, More H B. A neural network ap- proach for software development faults [A]. Proceedings of the Third Symposium on Software Reliability Engineering [C], 1992, 1: 83-89.
  • 3Lennox B, Rutherford P, Montague G A, et al. A novel fault pre- diction technique using model degradation analysis [A]. Process- ings of the American Control Conference [C], 1995, 5:3274 - 3278.
  • 4Devabhaktuni V K, Yagoub M C E, Zhang Q 3. A robust algorithmfor automatic development of neural network models for microwave applications [J]. IEEE Transactions Microwave Theory Technolo- gy, 2001, 49 (12): 2282-2291.
  • 5杜金榜,王跃科,王湘祁,杨湘.军用自动测试设备的发展趋向[J].计算机自动测量与控制,2001,9(5):1-3. 被引量:40
  • 6Qiu H, Lee J, Lin J, et al. Robust performance degradation assess- ment methods for enhanced rolling element bearing prognostics [J]. Advanced Engineering Informatics, 2003, 17 (6) :127 - 140.
  • 7Young J C, Min S P, Chong N C. Prediction of drill failure using features extraction in time and frequency domain of feed motor cur- rent [J]. International Journal of Machine Tools: Manufacture, 2008, 48 (1): 29-39.
  • 8曾声奎,Michael G.Pecht,吴际.故障预测与健康管理(PHM)技术的现状与发展[J].航空学报,2005,26(5):626-632. 被引量:281

二级参考文献51

  • 1[5]刘笃任,杨万海.在系统可编程技术器件原理与应用[M].成都:电子科技大学出版社,2000.
  • 2[6]吕洪国.现代网络频谱测量技术[M].北京:清华大学出版社,1999.
  • 3[7]赵茂泰.智能仪器原理及应用[M].北京:电子工业出版社,1997.
  • 4Harman R M. [A]. Aerospace Conference Proceedings2002 IEEE[C]. 2002.
  • 5Nickerson B, Lally R. [A]. Aerospace Conference 2001 IEEE Proceedings[C]. 2001.
  • 6Alford L D Jr. [J]. Aerospace and Electronic Systems Magazine IEEE, 2001, 16(2).. 33-37.
  • 7Gartner D L, Dibbert S E. [A]. AUTOTESTCON Proceedings 2001 IEEE Systems Readiness Technology Conference[C]. 2001.
  • 8Byer B, Hess A, Fila L. [A]. Aerospace Conference 2001 IEEE Proceedings[C]. 2001.
  • 9Hess A, Calvello G, Dabney T. [A]. Aerospace Conference 2004 Proceedings. 2004 IEEE[C]. 2001.
  • 10Andy Hess. [A]. NDIA 4th Annual Systems Engineering Conference[C]. 2001.

共引文献319

同被引文献11

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部