期刊文献+

基于元学习的污水水质集成软测量模型 被引量:6

Soft-Sensor of Water Quality Based on Integrated ELM with Meta-Learning
原文传递
导出
摘要 针对污水处理过程在运行工况频繁波动的情况下,单一水质软测量模型精度下降的问题,提出了污水水质集成软测量建模方法.模型由3层结构组成:基于模糊聚类-极限学习机(ELM,extreme learning machine)的预测子模型位于最底层,第2层采用自适应加权融合方法将子模型预测值进行集成,最上层采用基于信息熵的元学习机制管理融合权值.ELM的快速学习特点使模型具有较好的实时性能,自适应加权融合方法和元学习机制提高了模型泛化性,元学习机制跟踪污水处理过程运行状况的动态变化趋势.仿真结果表明,在多工况条件下,污水水质COD(chemical oxygen demand,化学需氧量)集成软测量模型具有较好的精度. A soft-sensor of water quality for wastewater treatment plants,which is based on an integrated model,is presented.The proposed soft-sensor aims to address the difficulty in using a single model to represent the characteristics of wastewater treatment processes with varying operating regimes.The soft-sensor is composed of three layers,in which a predictive sub-model based on FCM-ELMs are the bottom layer,adaptive weighted fusion method fusing predictive values of the sub-model are the middle layer,and a meta-learning mechanism based on information entropy updating fusion weights is the top layer.The meta-learning mechanism can track the dynamic trend of operating conditions of wasterwater treatment plants.The quick learning advantage of ELM results in the soft-sensor showing excellent real-time performance.The adaptive weighted fusion method and meta-learning mechanism improve the model generalization.Simulation results show that the integrated model for COD is more accurate than other models.
出处 《信息与控制》 CSCD 北大核心 2014年第2期248-252,共5页 Information and Control
基金 中国博士后科学基金面上资助项目(2013M530953 2013M532118) 国家自然科学基金资助项目(61034008 61004051)
关键词 污水处理 软测量 自适应加权融合 元学习 wastewater treatment soft-sensor adaptive weighted fusion meta-learning
  • 相关文献

参考文献20

  • 1杨维维,乔俊飞.基于递归高阶神经网络的污水处理系统建模[J].信息与控制,2011,40(5):710-714. 被引量:5
  • 2Murray-Smith R, Johansen T A. Multiple model approaches to nmdelling ad control[ M ]. London, UK: Taylor and Francis, 1997.
  • 3Breuer L, Huisman J A, Willems P. Assessing the impact of land use change on hydrology by ensemble modeling (LUCHEM). I: Model inter- comparison with current land use[Jl. Advances in Water Resources, 2009, 32 (2) : 129 - 146.
  • 4Granitto P M, Verdes P F, Ceccatto H A. Neural networks ensembles: Evaluation of aggregation algorithms[ J ]- Artificial Intelligence, 2005, 163(2) : 139 -162.
  • 5Windeatt T. Diversity measures for nmltiple classifier system analysis and design [ J ]. Information Fusion, 2005, 6 (1) : 21 -36.
  • 6Kuncheva L I. Combining pattern classifiers, methods and algorithms [ M ]. USA: Wiley, 2004.
  • 7Yao X, Liu Y. Making use of population information in evolutionary artificial neural networks [ J ]. IEEE Transactions on Systems, Man, and Cy- bernetics, Part B: Cybernetics, 1998, 28(3) : 417 -425.
  • 8Perrone M P, Cooper L N. When networks disagree: Ensemble methods for hybrid neural networks[ R]. Providence, Rhode Island, USA : Insti- tute for Brain and Neural Systems, Brown University, 1993.
  • 9Su Z Q, Tong W D, Shi L M, et al. A partial least squares-based consensus regression method for the analysis of" near-infrared complex spectral data of plant samples[ J ]. Analytical Letters, 2006, 39 (9) : 2073 -2083.
  • 10王春生,吴敏,曹卫华,何勇.铅锌烧结配料过程的智能集成建模与综合优化方法[J].自动化学报,2009,35(5):605-612. 被引量:9

二级参考文献43

共引文献24

同被引文献88

  • 1von Stosch M, Oliveira R, Peres J, et al. Hybrid semi-parametric modeling in process systems engineering: Past, present and future [ J ]. Computers and Chemical Engineering, 2014, 60 : 86 - 101.
  • 2Gunther J C, Conner J S, Seborg D E. Process monitoring and quality variable prediction utilizing PLS in industrial fed-batch cell culture [ J ]. Journal of Process Control, 2009, 19 (5) : 914 - 921.
  • 3Kashani M N, Aminian J, Shahhosseini S, et al. Dynamic crude oil fouling prediction in industrial preheaters using optimized ANN based mov- ing window technique [ J]. Chemical Engineering Research and Design, 2012, 90 (7) : 938 - 949.
  • 4Bates J M, Granger C W I. The combination of forecasts[J].Operations Research Quarterly, 1969, 20 (4) : 451 -468.
  • 5Ge Z Q, Song Z H. Bagging support vector data description model for batch process monitoring[ J]. Journal of Process Control, 2013,23 (8) : 1090 - 1096.
  • 6Zhang S N, Wang F L, He D K, et al. Real-time product quality control for batch processes based on stacked least-squares support vector re- gression models[ J]. Computers and Chemical Engineering, 2012, 36:217 -226.
  • 7Sridhar D, Seagrave R, Bartlett E. Process modeling using stacked neural networks[ J]. AIChE Journal, 1996, 42 (9) : 2529 -2539.
  • 8Zhang J. Inferential estimation of polymer quality using bootstrap aggregated neural networks [J].Neural Networks, 1999, 12 (6) : 927 -938.
  • 9Chen T, Ren J H. Bagging for Gaussian process regression[J]. Neurocomputing, 2009, 72(7/8/9) : 1605 -1610.
  • 10Olsson G. Instrumentation, control and automation in the water industry-state-of-the-art and new challenges[J]. Water Science & Technology 2006, 53(4/5) : 1 -16.

引证文献6

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部