期刊文献+

湖北铜绿山古铜矿遗址区木本植物对重金属富集能力的分析 被引量:31

Analysis on heavy metal enrichment ability of woody plants at ancient copper mine site in Tonglushan of Hubei Province
下载PDF
导出
摘要 对湖北铜绿山古铜矿遗址区的木本植物种类组成及生长概况进行了调查,并采用原子吸收光谱法测定了木本植物地上部和地下部及其根际土壤中重金属含量;在此基础上,分析了各树种对cu、cd和Pb的富集作用,并对木本植物的生态修复意义进行了初步评价。结果表明:在该古铜矿遗址区共有木本植物13科14属14种,其中乔木13种、灌木1种;木本植物的树龄4~25a、株高3.7~22.6m、胸径5.3~29.0am,长势均较好。木本植物根际土壤中Cu、Cd、Pb、Cr、Mn和zn的平均含量分别为3166.73、3.66、137.06、31.32、1774.43和208.32mg·kg-1,其中,土壤中Cu、Cd和Pb的含量达到重度污染等级。各树种地上部和地下部的Cu、Cd和Ph的含量差异明显,且均为cu含量最高、cd含量最低;各树种的地上部和地下部对Cu、Cd和Pb的富集系数及综合富集系数也均有明显差异,但对Cd的富集系数均最大。法国冬青[Viburnumodoratissimumvat.awabuki(K.Koch)ZabelexRumpl]、梧桐[Firmianaplatanifolia(Linn.f.)Marsili]、桂花[Osmanthusfragrans(Thunb.)Lour.]和刺槐(RobiniapseudoacaciaLinn.)地上部的综合富集系数较高,苦楝(MeliaazedarachLinn.)、女贞(LigustrumlucidumAit.)、法国冬青和樟树[Cinnamomumcamphora(Linn.)Presl]地下部的综合富集系数较高;总体上看,法国冬青、苦楝、女贞、梧桐和桂花对Cu、Cd和Pb的平均综合富集系数均大于1,具有较高的重金属富集能力。根据研究结果,建议在Pb污染区域可选择栽植二球悬铃木(Platanus×acerifolia 2i。(Ait.)Willd.]和构树[Broussonetiapapyrifera(Linn.)L’Heft.exVent.]等树种,在Cd污染区域可选择栽植法国冬青、梧桐、刺槐和苦楝等树种,而在Cu—Cd—Pb复合污染区域应栽植法国冬青、苦楝、女贞、梧桐、桂花和刺槐等树种。 Species composition and growth status of woody plants at ancient copper mine site in Tonglushan of Hubei Province were surveyed and heavy metal contents in above- and under-ground parts of woody plants and in its rhizosphere soil were determined by atomic absorption spectrometry. On these bases, enrichment effect of all tree species on Cu, Cd and Pb was analyzed and significance of ecological restoration of woody plants was evaluated preliminarily. The results show that there are 14 species woody plants belonging to 14 genera in 13 families at ancient copper mine site in Tonglushan, in which includes 13 arbors and 1 shrub, and they grow better with tree age 4-25 a, height 3.7-22.6 m and diameter at breath height 5.3-29.0 era. Average contents of Cu, Cd, Pb, Cr, Mn and Zn in rhizosphere soil of woody plants are 3 166.73, 3.66, 137.06, 31.32, 1 774.43 and 208.32 mg ~ kg-I , respectively, in which, Cu, Cd and Pb contents in soil reach the heavy pollution level. There are obvious differences in Cu, Cd and Pb contents in above- and under-ground parts of all tree species, and in all tree species, Cu content is the highest and Cd content is the lowest. Also, there are obvious differences in enrichment coefficients and complex enrichment coefficients of Cu, Cd and Pb in above- and under-ground parts of all tree species but enrichment coefficient of Cd is the highest. Complex enrichment coefficient of above- ground part of Viburnum odoratissimum vat. awabuki (K. Koch) Zabel ex Rumpl., Firmiana platanifolia (Linn. f.) Marsili, Osmanthusfragrans (Thunb.) Lout. and Robinia pseudoaeacia Linn. is higher, and that of under-ground part of Melia azedarach Linn., Ligustrum lueidum Ait., V. odoratissimum var. awabuki and Cinnamomum camphora (Linn.) Presl is coefficient of V. odoratissimum var. awabuki, M. higher. Generally, averages of complex enrichment azedarach, L. lucidum, F. platanifolia and 0. fragrans on Cu, Cd and Pb all are more than 1, and they possess strong enrichment ability to heavy metals. According to these research results, it is suggested that Platanus × acerifolia (Ait.) Willd. and Broussonetia papyrifera (Linn.) L' Herr. ex Vent. can be planted in Pb pollution area, V. odoratissimum var. awabuki, F. platanifolia, R. pseudoacacia and M. azedarach can be planted in Cd pollution area, and V. odoratissimum var. awabuki, M. azedarach, L. lucidum, F. platanifolia, 0. fragrans and R. pseudoacacia should be planted in Cu-Cd-Pb complex pollution area.
出处 《植物资源与环境学报》 CAS CSCD 北大核心 2014年第1期78-84,共7页 Journal of Plant Resources and Environment
基金 湖北省自然科学基金重点项目(2011CDA037) 湖北省科技支撑计划公益性科技研究类项目(2012DCA23) 湖北理工学院科研项目(12xjz38Q) 湖北省黄石市科技局科技计划项目(2010A1019-2) 湖北省高等学校优秀中青年科技创新团队资助计划项目(T201223)
关键词 古铜矿遗址 重金属污染 木本植物 根际土壤 富集能力 生态修复 ancient copper mine site heavy metal pollution woody plants rhizosphere soil enrichmentability ecological restoration
  • 相关文献

参考文献17

  • 1KUMAR P B A N,DUSHENKOV V,MOTTO H,et al.Phyto-extraction:the use of plant to remove heavy metals from soils [J].Environmental Science and Technology,1995,29:1232-1238.
  • 2EBBS S,LAN I,AHNER B,et al.Phytochelatin synthesis is not responsible for Cd tolerance in the Zn/Cd hyperaccumulator Thlaspi caerulescenes(J.& C.Presl)[J].Planta,2002,214:635-640.
  • 3KUPPER H,GOTZ B,MIJOVILOVICH A,et al.Complexation and toxicity of copper in higher plants.I.Characterization of copper accumulation,speciation,and toxicity in Crassula helmsii as a new copper accumulator[J].Plant Physiology,2009,151:702-714.
  • 4KRAMER U.Metal hyperaccumulation in plants [J].Annual Re-view of Plant Biology,2010,61:517-534.
  • 5KACHENKO A G,SINGH B,BHATIA N.The role of low molecular weight ligands in nickel hyperaccumulation in Hybanthus floribundus subspecies floribundus [J].Functional Plant Biology,2010,37:1143-1150.
  • 6CASTILLO O S,DASGUPTA-SCHUBERT N,ALVARADO C J,et al.The effect of the symbiosis between Tagetes erecta L.(marigold)and Glomus intraradices in the uptake of copper(Ⅱ)and its implications for phytoremediation[J].New Biotechnology,2011,29(1):156-164.
  • 7De SOUZA COSTA E T,GUIHERME L R,De MELO E E,et al.Assessing the tolerance of castor bean to Cd and Pb for phyto-remediation purposes [J].Biological Trace Element Research,2012,145:93-100.
  • 8BRYAN G W,LANGSTON W J.Bioavailability,accumulation and effects of heavy metals in sediments with special reference to United Kingdom estuaries:a review[J].Environmental Pollution,1992,76(2):89-131.
  • 9DENG H,LI M S,YANG S X.Manganese uptake and accumulation in a woody hyperaccumulator,Schima superba[J].Plant,Soil and Environment,2008,54(10):441-446.
  • 10PAULSON M,BARDOS P,HARMSEN J,et al.The practical use of short rotation coppice in land restoration[J].Land Contamination and Reclamation,2003,11:323-338.

二级参考文献44

共引文献262

同被引文献633

引证文献31

二级引证文献200

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部