期刊文献+

滚动轴承故障诊断的神经网络技术 被引量:1

The Application of Neural Networks Technology to the Roll Bearing Failure Diagnosis
下载PDF
导出
摘要 文中将神经网络技术运用于滚动轴承故障诊断.着重讨论了传统故障诊断技术所面临的挑战及基于神经网络的故障诊断技术的优越性.传统的故障诊断专家系统在知识的获取及表达上存在着困难,并且当系统较大时,变得非常庞大,不适于在线控制;人工神经网络对信息分布式的存储及处理,具有明显的优点.以滚动轴承故障诊断为例,编制了基于神经网络技术的诊断程序,运行结果表明,该方法具有判断准确、容错性好、适于在线工作、便于推广的优点. The paper the neural networks technology has been applied to the ball bearing failure diagnosis. Discuses the present situation of traditional failure diagnosis and the advantage of neural networks failure diagnosis. Traditional failure diagnosis expert system has trouble in getting and expressing knowledege and become very big when the system is big. It cannot work at line. Artificial neural networks has obvious advantage in storing and dealing with knowledege. In the end drawsup a diagnose program of neural networks failure diagnosis. This methode can judge accuratly work at line and is easy for diffusion.
机构地区 南方冶金学院
出处 《南方冶金学院学报》 2001年第2期141-145,共5页 Journal of Southern Institute of Metallurgy
关键词 故障诊断 神经网络技术 反向传播算法 滚动轴承 mechanical failure diagnosis  neural networks  technology  back propagation algorithm
  • 相关文献

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部