期刊文献+

基于细胞神经网络的煤仓图像处理方法研究 被引量:2

Research on Image Processing Method of Coal Bunker Based on Cellular Neural Networks
原文传递
导出
摘要 为了解决传统接触式煤位检测方法存在的缺点,如使用寿命短、时间长,费工费时等。提出了基于细胞神经网络的煤仓图像处理方法,核心思想是:通过CNN基本状态方程的基本原理,构造出数学形态滤波的细胞神经网络MMCNN方程。细胞神经网络完成了膨胀、腐蚀具体的计算。经过测试验证,效果很好。其应用可以实现远程监控,实时性很好,具有广阔的应用空间。 In order to solve the traditional coal-contact level detection method shortcomings, such as short life, long time, work time-consuming and more. This paper presents a cellular neural networks based image processing method bunker, the core idea of this method is that by CNN basic fundamental equation of state is constructed mathematical morphology filtering cellular neural networks MMCNN equation. Cellular neural networks completed the expansion, corrosion specific calculation. After testing can be seen, the effect is very good. Application of this method can achieve remote monitoring, and real-time performance is very good, with a broad application space.
出处 《煤矿机械》 北大核心 2014年第5期185-186,共2页 Coal Mine Machinery
关键词 细胞神经网络 数学形态 煤仓图像处理 cellular neural networks mathematical morphology image processing coal bunker
  • 相关文献

参考文献6

二级参考文献24

  • 1张志民,张小娟,李明华,胡小兵.一种引入奖励与惩罚机制的蚁群算法[J].计算机仿真,2006,23(7):161-163. 被引量:11
  • 2张毅,梁艳春.基于选路优化的改进蚁群算法[J].计算机工程与应用,2007,43(2):60-63. 被引量:14
  • 3牛新征,佘堃,路纲,周明天.蚁群算法研究的新进展和展望[J].计算机应用研究,2007,24(4):12-15. 被引量:7
  • 4Colorni A, Dorigo M, Maniezzo V. The Ant System:Optimization by a Colony of Cooperating Agents[J ]. IEEE Transactions on Systems, 1996,26(1):1 -13.
  • 5Bullnheimer B,Hartl R F,Strauss C. A New Rankbased Version of the Ant System: A Computational Study [ R ]. Vienna: Institute of Management Science, University of Vienna, 1997.
  • 6Dorigo M, Cambardella L M. A Cooperative Learning Approach to the Traveling Salesman Problem [ J ]. IEEE Transactions on Evolutionary Computation, 1997,1 ( 1 ) :53 -66.
  • 7申春 彭秀增 罗凡 等.基于方向启发因子的蚁群算法.计算机科学,2006,33(8):175-176.
  • 8任伟建,陈建玲,韩冬,等.蚁群算法综述[C].中国控制与决策学术年会论文集,2007:357-362.
  • 9Zhao D B, Yi J Q. Lecture Notes in Computer Science[M]. Heidelberg Springer Berlin, 2006: 222-231.
  • 10张曦煌,李彦中,李岩.基于加速寻径收敛的改进型蚁群算法[J].计算机工程与应用,2007,43(24):75-77. 被引量:5

共引文献73

同被引文献37

  • 1廖晓昕.细胞神经网络的数学理论(Ⅱ)[J].中国科学(A辑),1994,24(10):1037-1047. 被引量:56
  • 2L O Chua, L Yang. Celluar neural networks:Application [ J]. IEEE Transactions Circuits and System I, 1988,35 (10) :1273 - 1290.
  • 3L O Chua, L Yang. Cellularneural networks : Theory [ J ]. IEEE Transactions on Circuits and System I, 1988, 35 (10) : 1257 - 1272.
  • 4Slavova A, Rashkova V. A novel CNN based image denois- ing model [ A]. The 20th European Conference on Circuit Theory and Design (ECCTD) [ C ]. USA : IEEE, 2011. 226 - 229.
  • 5Deng S, Tian Y, Hu X, et al. Application of new advanced CNN structure with adaptive thresholds to color edge detec- tion[J ]. Communications in Nonlinear Science and Numer- ical Simulation ,2012,17(4) : 1637 - 1648.
  • 6Caponetto R. Fractional Order Systems : Modeling and Con- trol Applications[M ]. Singapore : World Scientific, 2010.
  • 7Chua L O, Lin G. Canonical realization of Chua's circuit family [ J]. IEEE Transactions on Circuits and System, 1990,37 ( 7 ) : 885 - 902.
  • 8Silva C P. Shil'nikov's theorem-a tutorial [ J]. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 1993,40 ( 10 ) : 675 - 682.
  • 9Podlubny I. Fractional Differential Equations:An Introduc- tion to Fractional Derivatives, Fractional Differential E- quations, to Methods of Their Solution and Some of Their Applications [ M ]. USA : Academic Press, 1998.
  • 10A Charef, H H Sun,Y Y Tsao,B Onaral. Fractal system as represented by singularity function [ J ]. IEEE Transac- tions on Automatic Control, 1992,37 (9) : 1465 - 1470.

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部