期刊文献+

拼接干涉仪在控制装校面形中的应用 被引量:1

Application of stitching interferometer to controlling assembly distortion
下载PDF
导出
摘要 通过对比大口径光学元件夹持不当时全口径与局部口径之间的图像关系,研究局部面形控制的新方式。并与高精度的大口径干涉仪进行比对测试,验证拼接干涉仪的测试精度。实验表明,拼接干涉仪局部测试精度可达50 nm(PV值).空间分辨力高达5 mm^(-1),可以实现中频段的装校临控。使用拼接干涉仪扫描测试全口径面形,测试不确定度小于100nm.与φ600 mm的大口径干涉仪测试结果差别小于0.04λ(波长λ=632.8 nm)。 During the assembly of large piano-optics, astigmatism will be generated when the assembly manner is improper. This astigmatism has the same character in local surface and full-aperture surface. The flat stitching interferometer has the ability to measure both the local surface and the full-aperture surface. Therefore, we employ a flat stitching interferometer to inspect lo- cal the surface during assembly, hy which the astigmatism is controlled. Experiments show that the local surface precision of the flat stitching interferometer arrives at 50 nm (PV) and the space rate reaches 5 mm 1 , enabling intermediate frequency detection. On the other hand, the flat stitching interferometer can measure the full-aperture of optics by scanning. The test uncertainty is 100 nm and the difference relative to large aperture interferometer is less than 0.04λ(λ= 632.8 nm).
出处 《强激光与粒子束》 EI CAS CSCD 北大核心 2014年第5期69-73,共5页 High Power Laser and Particle Beams
关键词 子孔径拼接 象散 局部面形 装校监测 全口径面形 sub-aperture stitching astigmatism local surface assembly inspection full-aperture surface
  • 相关文献

参考文献10

二级参考文献28

  • 1程维明,林有略,陈明仪.多孔径扫描波面恢复技术的精度评定及影响因素[J].光学学报,1993,13(8):711-716. 被引量:9
  • 2陈宝林.最优化理论与算法[M].北京:清华大学出版社,1998..
  • 3[2]Masashi Otsubo, Katsuyuki Okada, Jumpei Tsujiuchi. Measurement of large plane surface shapes by connecting small-aperture inteferograms[J]. Opt Eng, 1994, 33(2): 608-613.
  • 4[3]Bray M. Stitching interferometer for large plane optics using a standard interferometer[A]. Proc of SPIE[C]. 1997, 3134: 39-50.
  • 5[4]Bray M. Stitching interferometer for large optics: Recent developments of a system[A]. Proc of SPIE[C].1999, 3492: 946-956.
  • 6[7]Chow W W, Lawrence G N. Method for subaperture testing interferogram reduction[J]. Optics Letters, 1983, 8(9): 468-470.
  • 7陈宝林.最优化理论与算法[M].北京:清华大学出版社,1998..
  • 8Masashi Otsubo, Katsuyuki Okada, Jumpei Tsujiuchi. Measurement of large plane surface shapes by connecting small-aperture inteferograms[J]. Opt Eng, 1994, 33(2):608-613.
  • 9Michael Bray. Stitching interferometer for large plano optics using a standard interferometer[J]. Proceedings of SPIE, 1997, 3134: 39-50.
  • 10Bray M. Stitching interferometry: Side effects and PSD[J]. Proceedings of SPIE, 1999, 3782: 443-452.

共引文献71

同被引文献11

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部