期刊文献+

一种基于改进BFO和RLS的模糊建模方法 被引量:2

Fuzzy modeling method with improved BFO and RLS
下载PDF
导出
摘要 为了提高非线性系统的模糊建模精度,提出了一种基于改进的菌群优化算法(IBFO)和递推最小二乘(RLS)算法的模糊建模混合学习算法。该方法采用T-S模糊系统进行函数逼近,首先用改进的菌群优化算法优化模糊模型的前提参数,然后用递推最小二乘算法优化模糊模型的后件参数,实现对模糊模型全局参数的优化。对非线性系统、煤气炉数据和气动加载系统的建模表明,该方法在逼近精度方面优于其他方法。 A hybrid learning fuzzy modeling approach based on the improved bacterial foraging optimization algorithm(IBFO)and the recursive least square(RLS)algorithm is proposed to improve the accuracy of fuzzy modeling for nonlinear system. A T- S type fuzzy system is used as the function approximator. The IBFO is used to optimize the premise parameters of the fuzzy model,and the RLS is applied to update the consequent parameters. This method realizes the global parameters optimization for fuzzy modeling. Simulation results on a nonlinear system,Box-Jenkins gas data and a pneumatic loading system show the superiority of the proposed approach in terms of approximation accuracy.
出处 《南京理工大学学报》 EI CAS CSCD 北大核心 2014年第2期252-258,共7页 Journal of Nanjing University of Science and Technology
基金 河北省自然科学基金(F2010001320)
关键词 改进的菌群优化算法 递推最小二乘算法 T-S模糊系统 全局优化 improved bacterial foraging optimization algorithm recursive least square algorithm T-S fuzzy system global optimization
  • 相关文献

参考文献17

  • 1宋晓娜,徐胜元,沈浩,赵环宇.不确定T-S模糊时变时滞系统的时滞依赖无源输出反馈控制[J].南京理工大学学报,2011,35(1):6-10. 被引量:5
  • 2郭亚军,王晓锋,马大为,乐贵高.自适应模糊滑模控制在火箭炮耦合系统中的应用[J].南京理工大学学报,2012,36(4):618-623. 被引量:6
  • 3Park B J, Sung K O, Pedrycz W. Fuzzy identification by means of partition of fuzzy input space and an aggregate objective function [ A ]. IEEE International Fuzzy Systems Conference Proceedings [ C ]. Seoul, South Korea:lEEE, 1999,22-25.450-455.
  • 4Chen Debao, Wang Jiangtao, Zou Feng, et al. Linguistic fuzzy model identification based on PSO with different length of particles [ J ]. Applied Soft Computing, 2012, 12( 11 ) :3390-3400.
  • 5Li Chunshien, Wu Tsunghan. Adaptive fuzzy approach to function approximation with PSO and RLSE [ J ]. Expert Systems with Applications, 2011, 38 ( 10 ) : 13266-13273.
  • 6Zhao Liang, Qian Feng, Yang Yupu, et al. Automatically extracting T-S fuzzy models using cooperative random learning particle swarm optinization [ J ]. Applied Soft Computing,2010,10(3) :938-944.
  • 7Passino K M. Biomimicry of bacterial foraging fordistributed optimization and control [ J ]. IEEE Control Systems Magazine,2002,22(3 ) :52-67.
  • 8Mishra S, Bhende C N. Bacterial foraging Technique- Based optimized active power filter for load compensation [ J ]. IEEE Transactions on Power Delivery,2007,22 ( 1 ) :457-465.
  • 9Tripathy M, Mishra S. Bacteria foraging-based solution to optimize both real power loss and voltage stability limit[ J]. IEEE Transactions on Power Systems,2007, 22( 1 ) :240-248.
  • 10Alejandra Guzm6n M, Delgado A, De Carvalho J. A novel muhiobjective optimization algorithm based on bacterial chemotaxis [ J ]. Engineering Applications of Artificial Intelligence ,2010,23 ( 3 ) :292-301.

二级参考文献34

共引文献11

同被引文献6

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部