期刊文献+

水稻砷的吸收机理及阻控对策 被引量:26

Mechanisms of Arsenic Uptake by Rice and Mitigation Strategies
原文传递
导出
摘要 水稻积累砷的能力较其他农作物强,稻米是我国人群从食品中摄入无机砷的主要来源,降低稻米砷含量对增进农产品质量安全有重要意义。本文阐述了稻田砷的生物地球化学转化特征及水稻对不同形态砷的吸收、运输与储存机理,提出阻控稻米砷积累的对策,并讨论了需要进一步研究的问题。 Rice has a greater ability to accumulate arsenic in the grain than other cereal crops. Consumption of rice constitutes a major dietary source of inorganic arsenic for the population in China. Decreasing arsenic ac- cumulation in rice is of great importance to food safety. Here, the biogeochemical transformations of arsenic in the paddy environment and the mechanisms of arsenic uptake, transport and storage in rice are reviewed. Strategies to mitigate excessive arsenic accumulation in rice are discussed. Knowledge gaps are also identified.
作者 赵方杰
出处 《植物生理学报》 CAS CSCD 北大核心 2014年第5期569-576,共8页 Plant Physiology Journal
基金 国家自然科学基金(31372123) 公益性行业(农业)科研专项(201403015)
关键词 水稻 吸收 运输 阻控 arsenic rice uptake transport mitigation
  • 相关文献

参考文献87

  • 1Abedin MJ, Feldmann J, Meharg AA (2002). Uptake kinetics of arsenic species in rice plants. Plant Physiol, 128: 1120-1128.
  • 2Arao T, Kawasaki A, Baba K, Mori S, Matsumoto S (2009). Effects of water management on cadmium and arsenic accumulation and dimethylarsinic acid concentrations in Japanese rice. Environ Sci Technol, 43: 9361-9367.
  • 3Banerjee M, Banerjee N, Bhattacharjee P, Mondal D, Lythgoe PR, Martinez M, Pan JX, Polya DA, Giri AK (2013). High arsenic in rice is associated with elevated genotoxic effects in humans. SciRep, 3: 2195.
  • 4Bienert GP, Thorsen M, Schüssler MD, Nilsson HR, Wagner A, Tamás MJ, Jahn TP (2008). A subgroup of plant aquaporins facilitate the bi-directional diffusion of As(OH)3 and Sb(OH)3 across membranes. BMC Biol, 6: 26.
  • 5Bogdan K, Schenk MK (2008). Arsenic in rice (Oryza sativa L.) related to dynamics of arsenic and silicic acid in daddy soils. Environ Sci Technol, 42: 7885-7890.
  • 6Borch T, Kretzschmar R, Kappler A, Van Cappellen P, Ginder-Vogel M, Voegelin A, Campbell K (2010). Biogeochemical redox processes and their impact on contaminant dynamics. Environ Sci Technol, 44: 15-23.
  • 7Carey AM, Norton GJ, Deacon C, Scheckel KG, Lombi E, Punshon T, Guerinot ML, Lanzirotti A, Newville M, Choi Y et al (2011). Phloem transport of arsenic species from flag leaf to grain during grain filling. New Phytol, 192: 87-98.
  • 8Carey AM, Scheckel KG, Lombi E, Newville M, Choi Y, Norton GJ, Charnock JM, Feldmann J, Price AH, Meharg AA (2010). Grain unloading of arsenic species in rice. Plant Physiol, 152: 309-319.
  • 9Castrillo G, Sanchez-Bermejo E, de Lorenzo L, Crevillen P, Fraile- Escanciano A, Mohan TC, Mouriz A, Catarecha P, Sobrino-Plata J, Olsson S et al (2013). WRKY6 transcription factor restricts arsenate uptake and transposon activation in Arabidopsis. Plant Cell, 25: 2944-2957.
  • 10Chen W, Chi Y, Taylor NL, Lambers H, Finnegan PM (2010). Disruption of ptLPD1 or ptLPD2, genes that encode isoforms of the plastidial lipoamide dehydrogenase, confers arsenate hypersensitivity in Arabidopsis. Plant Physiol, 153: 1385-1397.

同被引文献309

引证文献26

二级引证文献69

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部