期刊文献+

过程工程在木质纤维素发酵抑制物解除中的应用 被引量:5

Application of process engineering to remove lignocellulose fermentation inhibitors
原文传递
导出
摘要 发酵抑制物对宿主细胞产生毒害作用,是木质纤维素生物炼制的主要瓶颈之一。减少抑制物含量、解除抑制作用是提高发酵效率的重要环节。本文讨论了木质纤维素发酵抑制物的来源、组成、特点以及相应的解除方法,提出了"源头降低抑制物—纤维素木质素分级转化"炼制模式和"发酵促进剂设计技术",为木质纤维素发酵抑制物的解除及木质纤维素开发利用提供了全新的技术路线。 Fermentation inhibitors are toxic to cells, which is one of the bottlenecks for lignocellulose bio-refinery process. How to remove those inhibitors serves a key role in the bioconversion of lignocellulose. This article reviews the sources and the types of the inhibitors, especially the updated removal strategies including physical methods, chemical methods, biological methods and inhibitor-tolerant strain construction strategies. Based on these, we introduce a new bio-refinery model named "fractional conversion", which reduces the production of inhibitors at pretreatment stage, and a novel in situ detoxification method named "fermentation promoter exploitation technology". This review could provide new research ideas on the removal of fermentation inhibitors.
出处 《生物工程学报》 CAS CSCD 北大核心 2014年第5期716-725,共10页 Chinese Journal of Biotechnology
基金 生物质炼制工程北京市重点实验室2013年度科技创新基地培育与发展工程专项项目(No.Z13111000280000) 国家高技术研究发展计划(863计划)(No.2012AA021302) 国家重点基础研究发展计划(973计划)(No.2011CB707401)资助~~
关键词 木质纤维素 发酵抑制物 源头解除抑制物 分级转化 发酵促进剂 lignocellulose, fermentation inhibitors, reducing inhibitors from the very beginning, fractional conversion,fermentation promoter
  • 相关文献

参考文献42

  • 1Chen H, Li G, Li H. Novel pretreatment of steam explosion associated with ammonium chloride preimpregnation. Bioresour Technol, 2014, 153: 154-159.
  • 2Almeida JR, Modig T, Petersson A, et al. Increased tolerance and conversion of inhibitors in lignocellulosic hydrolysates by Saccharomyces cerevisiae. J Chem Technol Biot, 2007, 82(4): 340-349.
  • 3Palmqvist E, Hahn-Hagerdal B. Fermentation of lignocellulosic hydrolysates. II: inhibitors and mechanisms of inhibition. Bioresour Technol, 2000, 74(1): 25-33.
  • 4Taherzadeh M, Gustafsson L, Niklasson C, et al. Physiological effects of 5-hydroxymethylfurfural on Saccharomyces cerevisiae. Appl Microbiol Biot, 2000, 53(6): 701-708.
  • 5Ando S, Arai I, Kiyoto K, et al. Identification of aromatic monomers in steam-exploded poplar and their influences on ethanol fermentation by Saccharomyces cerevisiae. J Biosci Bioeng, 1986,64(6): 567-570.
  • 6Li H, Chen H. Detoxification of steam-exploded corn straw produced by an industrial-scale reactor. Process Biochem, 2008, 43(12): 1447-1451.
  • 7Converti A, Dominguez JM, Perego P, et al. Wood hydrolysis and hydrolyzate detoxification for subsequent xylitol production. Chem Eng Technol, 2000, 23(11): 1013-1020.
  • 8Palmqvist E, Hahn-H/igerdal B. Fermentation of lignocellulosic hydrolysates. I: inhibition and detoxification. Bioresour Tecbnol, 2000, 74(1): 17-24.
  • 9Nilvebrant NO, Reimann A, Larsson S, et al. Detoxification of lignocellulose hydrolysates with ion-exchange resins. Appl Biochem Biotech, 2001 91(1/9): 3549.
  • 10Angm D, Altintig E, K6se TE. Influence of process parameters on the surface and chemical properties of activated carbon obtained from biochar by chemical activation. Bioresour Technol, 2013, 148: 542-549.

二级参考文献42

  • 1Wilson J J, Deschatelets L, Nishikawa N K. Comparative fermentability of enzymatic and acid hydrolysates of steampretreated aspenwood hemicellulose by Pichia stipitis CBS 5776[J]. Appl Microbiol Biotechnol, 1989, 31: 592-596.
  • 2Eken-Sara(g)oelu N, Arslan Y. Comparison of different pretreatments in ethanol fermentation using corn cob hemicellulosic hydrolysate with Pichia stipitis and Candida shehatae[J]. Biotechnol Lett, 2000, 22: 855-858.
  • 3Lindén T, Peetre J, Hahn-H?gerdal B. Isolation and characterisation of acetic acid tolerant galactose-fermenting strains of Saccharomyces cerevisiae from a spent sulfite liquor plant[J]. Appl Environ Microbiol, 1992, 58: 1661-1669.
  • 4Palmqvist E, Galbe, M Hahn-H?gerdal B. Evaluation of cell recycling in continuous fermentation of enzymatic hydrolysates of spruce with Saccharomyces cerevisiae and on-line monitoring of glucose and ethanol[J]. Appl Biochem Biotechnol, 1998, 50: 545-551.
  • 5Larsson S, Palmqvist E, Hahn-H?gerdal B, et al. The generation of fermentation inhibitors during dilute acid hydrolysis of softwood[J]. Enz Microb Technol, 1998, 24: 151-159.
  • 6Boyer L J, Vega K, Klasson K T, et al. The effects of furfural on ethanol production by Saccharomyces cerevisiae[J]. Biomass Bioeng, 1992, 3(1): 41-48.
  • 7Banerjee N, Bhatnagar R, Viswanathan L. Inhibition of glycolysis by furfural in Saccharomyces cerevisiae[J]. Eur J Appl Microbiol Biotechnol, 1981b, 11: 226-228.
  • 8Palmqvist E, Hahn-H(a)gerdal B, Galbe M, et al. The effect of water-soluble inhibitors from team-pretreated willow on enzymatic hydrolysis and ethanol fermentation[J]. Enz Microb Technol, 1996b, 19: 470-476.
  • 9Clark T, Mackie K L. Fermentation inhibitors in wood hydrolysates derived from the softwood Pinus radiata[J]. J Chem Biotechnol, 1984, B34: 101-110.
  • 10Larsson S, Reimann A, J?nsson, L. Comparison of different methods for the detoxification of lignocellulosic hydrolysates of spruce[J]. Appl Microbiol Biotechnol, 1999, 77-79: 91-103.

共引文献23

同被引文献41

  • 1薛珺,蒲欢,孙春宝.纤维素稀酸水解产物中发酵抑制物的去除方法[J].纤维素科学与技术,2004,12(3):48-53. 被引量:15
  • 2张银波,姜琼,江木兰,马立新.金针菇漆酶基因的克隆及其在毕赤酵母中的表达研究[J].微生物学报,2004,44(6):775-779. 被引量:28
  • 3刘朝贵,高金权,李成琼.糙皮侧耳(Pleurotus ostreatus)降解转化稻草秸秆研究[J].西南农业大学学报(自然科学版),2006,28(2):258-263. 被引量:21
  • 4刘富梁,王彩霞,厉丹丹,梁蓓蓓,闫丽娟,郭婧,张志群,白海滨.木质纤维素生物转化为乙醇的研究概况[J].湖北农业科学,2006,45(4):522-524. 被引量:2
  • 5王璞,田沈,王丹,张兰波,杨秀山.高耐毒性酿酒酵母的紫外诱变选育[J].可再生能源,2007,25(3):31-33. 被引量:4
  • 6LIU Z L, SLININGER P J, GORSICH S W. Enhanced biotransformation of furfural and hydroxymethylfurfural by newly developed ethanologenic yeast strains [ J ]. Applied Biochemistry and Biotechnology, 2005,28 ( 6 ) :451-460.
  • 7HEER D , SAUER U. Identification of furfural as a key toxin in lignocellulosic hydrolysates and evolution of a tolerant yeast strain [ J ]. Microbial Biotechnology ,2008,1 (6) :497-506.
  • 8WANG Ying, SHI Wen-long, LIU Xiang-yong, et al. Establishment of a xylose metabolic pathway in an industrial strain of Saccharomyces cerevisiae [ J ]. Biotechnology letters, 2004,26 ( 11 ) : 885-890.
  • 9WEI Ping-ying, LI Zi-long, HE Peng, et al. Genome shuffling in the ethanologenic yeast Gartdida krusei to improve acetic acid tolerance [ J ]. B ioteehnology and Applied Biochemistry,2008,49 (2) :113-120.
  • 10SHI Dong-jian, WANG Chang-lu, WANG Kui-ming. Genome shuffling to improve thermoto|erance, ethanol tolerance and ethanol productivity of Saccharomyces cerevisiae [ J ]. Journal of Industrial Microbiology & Biotechnology,2009,36 ( 1 ) : 139-147.

引证文献5

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部