期刊文献+

自调整的捕鱼策略优化算法 被引量:3

Adjustive fishing strategy optimization algorithm
下载PDF
导出
摘要 针对基本捕鱼策略优化算法(FSOA)在优化过程中存在易陷入局部最优、求解高维的复杂优化问题时优化性能不好的不足,对基本捕鱼策略优化算法(FSOA)进行了改进,提出了自调整的捕鱼策略优化算法(ADFSOA):算法采用时变的搜索半径,每个渔夫可根据自己所处的状态自我调整搜索策略。通过与基本FSOA、RFSOA和标准PSO算法的数值实验对比,表明了所提算法的优化性能具有显著的优势,可用于求解高维的复杂优化问题。 In order to overcome the shortcomings that basic FSOA is easily trapped in local optimum and unable to solve the high-dimensional complex optimization problems, an improved FSOA, named AD- j ustive Fishing Strategy Optimization Algorithm (ADFSOA),is proposed. In the algorithm, every fisher- man (searcher) uses a time-varying search-radius and can adjust his searching strategy according to his own state. Numerical experiments show that, compared with basic FSOA, RFSOA and standard PSO, the proposed algorithm is much superior to other algorithms and can be used to solve the complex high-dimensional optimization problems.
出处 《计算机工程与科学》 CSCD 北大核心 2014年第5期923-929,共7页 Computer Engineering & Science
基金 国家自然科学基金资助项目(61074185) 广西自然科学基金资助项目(0832084) 广西高等学校科研项目(201202ZD032)
关键词 捕鱼策略优化算法(FSOA) ADFSOA 时变搜索半径 调整因子 FSOA ADFSOA time-varying search radius adjustive factor
  • 相关文献

参考文献6

二级参考文献29

  • 1肖人彬,陶振武.群集智能研究进展[J].管理科学学报,2007,10(3):80-96. 被引量:33
  • 2戴汝为 周登勇.智能控制与适应性.第三届全球智能控制与自动化大会(WCICA'2000)[M].合肥:-,2000.11-17.
  • 3Holland J H.Adaptation in Nature and Artificial Systems[M].[S.l.]: MIT Press, 1992.
  • 4Kennedy J,Eberhart R C,Shi Y.Swarm intelligenee[M].San Francisco:Morgan Kaufman Publishers,2001.
  • 5Theraulaz G,Bonabeau E, Deneubourg J L.Self-organization of hierarchies in animal societies:The case of the primitively eusocial wasp polistes dominulus christ[J]Journal of Theoretical Biology,1995, 174:313-323.
  • 6Theraulaz G, Bonabeau E, Deneubourg J L.Response threshold reinforcement and division of labour in insect societies[C]//Proceedings of the Royal Society of London B,1998,265:327-335.
  • 7Eusuffm M,Lansey K E.Optimization of water distribution network design using shuffled frog leaping algorithm[J].Joumal of Water Resources Planning and Management,2003,129(3):210-225.
  • 8I Kennedy J,Eberhart R C,Shi Y.Swarm intelligence[M].San Francisco:Morgan Kaufman Publishers,2001.
  • 9Shi Y J,Eberhart R C.A modified particle swarm optimizer[C]// Proe of the IEEE CEC,1998:69-73.
  • 10Shi Y J, Eberhart R C.Fuzzy adaptive particle swarm optimiza- tion[C]//Proc of IEEE CEC,2001 : 101-106.

共引文献910

同被引文献32

引证文献3

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部