期刊文献+

基于层次K-均值聚类的支持向量机模型 被引量:1

A SUPPORT VECTOR MACHINE MODEL BASED ON HIERARCHICAL K-MEANS CLUSTERING
下载PDF
导出
摘要 针对支持向量机SVM分类效率低下的问题,提出一种基于层次K-均值聚类的支持向量机HKSVM(Hierarchical K-means SVM)学习模型。该方法首先对每类样本分别进行K-均值聚类,计算每类中心并训练SVM,得到初始分类器;然后根据超平面与聚类结果的关系,将聚类所得结果划分为活动类集和静止类集,并对超平面附近的活动类集进行深层聚类,以得到更小的类别同时计算类中心来训练新的SVM模型,并校正分类超平面,如此循环往复,直到得到较为精确的分类器为止。采用基于层次K-均值聚类的SVM模型,通过对活动类集进行不断地深层次聚类,从而在分类超平面附近得到较多样本点,而在距离超平面较远处则取少量训练样本,以有效压缩训练集规模,在保持SVM训练精度的同时大幅度提高其学习效率。标准数据集上的实验结果表明,HKSVM方法在大规模数据集上同时得到了较高的分类效率和测试精度。 This paper presents an improved SVM learning model,it is based on hierarchical k-means clustering and is called as hierarchical k-means SVM( HKSVM),to solve the problem of SVM in low classification efficiency. The method first makes k-means clustering on every sample class respectively and calculates the centre of each class as well as trains SVM to get initial classifier; then it divides the clustering result into active class set and static class set according to the relationship between the hyperplane and the clustering result,and conducts deeper clustering on the active sets near to the hyperplane for obtaining even smaller classes,and calculates at the same time the class centres to train new SVM model,and corrects the classified hyperplane. This process is on ad infinitum until the more precise classifier is obtained. Adopting hierarchical k-means clustering-based SVM model and by incessant deep clustering on active class sets,more sample points are obtained near the classified hyperplane; however,in where farther from the hyperplane,the extracted training samples are not much so as to effectively compress the size of the training set,and significantly improve SVM's learning efficiency while keeping its training precision. The experimental results on UCI benchmark datasets demonstrate that the proposed HKSVM model achieves higher classification efficiency and testing accuracy simultaneously on large-scale dataset.
出处 《计算机应用与软件》 CSCD 北大核心 2014年第5期172-176,共5页 Computer Applications and Software
关键词 层次K-均值聚类 支持向量机 HKSVM模型 活动类集 静止类集 Hierarchical k-means clustering Support vector machine(SVM) HKSVM model Active class set Static class set
  • 相关文献

参考文献13

  • 1IDC研究报告[DB/OL].2011-06.http://storage.chinabyte.com/163/12110163.shtml.
  • 2李航.统计学习方法[M].清华大学出版社,2012.
  • 3Vapnik V N.The nature of statistical learning theory [ M ].Berlin:Springer-Verlag,1995.
  • 4吴东洋,业巧林,业宁,张训华,武波.一种SVM训练样本集寻优算法[J].计算机应用与软件,2010,27(9):14-16. 被引量:5
  • 5Zhang X G.Using class-center vectors to build support vector machines [ C]//Proceedings of 1999 IEEE Signal Processing Society Workshop on Neural Networks for Signal Processing,Madison,WI,USA,1999,4:3-11.
  • 6Katagiri S,Abe S.Incremental training of support vector machines using hyperspheres [J]Pattern Recognition Letters,2006,27(13):1495-1507.
  • 7Ossua E,Freund R,Girosi F.Training support vector machines:An ap-plication to face detection[ C ]//Proceedings of 1997 IEEE Computer Society on Computer Vision and Pattern Recognition,Puerto Rico,1997:130-136.
  • 8Friel3 T T,Cristianini N,Campbell C.The kernel-adatron algorithm:A fast and simple learning procedure for support vector machines [ C ]//International Conference of Machine Learning,1998:188-196.
  • 9李建民,张钹,林福宗.序贯最小优化的改进算法[J].软件学报,2003,14(5):918-924. 被引量:30
  • 10Tsang I W,Kwok J T,Cheung P M.Core vector machines:fast SVM training on very large data sets [ J ].Journal of Machine Learning Re-search,2005,6:363-392.

二级参考文献22

  • 1余小鹏,周德翼.一种自适应k-最近邻算法的研究[J].计算机应用研究,2006,23(2):70-72. 被引量:16
  • 2李琳,张晓龙.基于RBF核的SVM学习算法的优化计算[J].计算机工程与应用,2006,42(29):190-192. 被引量:41
  • 3Vapnik V N.The Nature of Statistical Learning Theory[M].New York:Springer-Verlag,1995.
  • 4Cherkassky V,Mulier F.Learning from Data:Concept,Theory and Method.NY:JohnViley&sons,1997.
  • 5Richard O Duda,Peter E Hart,David G Stork.Pattern Classification[M].Znd ed.2003.
  • 6Vaseghi S.State duration modeling in hidden Markov models.Signal Processing,1995,41:31-41.
  • 7Guan D,Yuan W,tee Y K,et al.Nearest neighbor editing aided by unlabeled data[J].Information Sciences,2009,179(13):2273-2282.
  • 8Wang J,Neskovic P,Cooper L N.Improving nearest neighbor rule with a simple adaptive distance measure[J].Pattern Recognition Letters,2007,28(2):207-213.
  • 9Jahromi M Z,Parvinnia E,John R.A method of learning weighted similarity function to improve the performance of nearest neighbor[J].Information Sciences,2009,179(17):2964-2973.
  • 10Krishma K,Murty M N.Genetic K-means algorithm[J].IEEE Trans on System,Man,and Cybernetics:Part B,1999,5(1):96-100.

共引文献42

同被引文献9

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部