期刊文献+

基于情感词抽取与LDA特征表示的情感分析方法 被引量:5

A Sentiment Analysis Method Based on Sentiment Words Extraction and LDA Feature Representation
下载PDF
导出
摘要 情感分析作为文本挖掘的一个新型领域,可用于分类、归纳用户发布的产品评论,从而有助于商家改善服务,提高产品质量;同时为其他消费者提供购买决策。本文提出一种基于情感词抽取与LDA特征表示的情感分析方法,对产品评论进行褒贬二元分类。在情感词抽取中,采用人工构造的情感词典对预处理之后的文本抽取情感词;用LDA模型建立文档的主题分布,以评论-主题分布作为特征,用SVM分类器进行分类。实验结果表明,本文方法在评论褒贬分类方面有着良好的效果。 As a new field of sentiment analysis, text mining can be used to classify andsummarize online users' product reviews. The summaries and classification help provider to improve service and product quality, and also provide buyer advicse for other consumers. The paper proposes a sentiment analysis method based on sentiment words extraction and LDA feature representation, for online products' reviews making binary classification. The processing steps are as follows: extract sentiment words from the preprocessed text using the manually created sentiment dictionary; create the topic subject distribution of documents using the LDA model; take comment-subject distribution as feature; do classification based on the SVM classifier. Experiments show that, the proposed method has excellent effects of review of judgments classification.
出处 《计算机与现代化》 2014年第5期79-83,共5页 Computer and Modernization
关键词 情感分析 情感词抽取 主题模型 sentiment analysis sentiment words extraction latent Dirichlet allocation topic model support vector machine
  • 相关文献

参考文献15

  • 1赵妍妍,秦兵,刘挺.文本情感分析[J].软件学报,2010,21(8):1834-1848. 被引量:544
  • 2姚天昉,娄德成.汉语语句主题语义倾向分析方法的研究[J].中文信息学报,2007,21(5):73-79. 被引量:78
  • 3Pak A, Paroubek P. Twitter as a corpus for sentiment anal- ysis and opinion mining[ C]// Proceedings of the 7th In- ternational Conference on Language Resources and Evalua- tion. 2010:1320-1326.
  • 4孙艳,周学广,付伟.基于主题情感混合模型的无监督文本情感分析[J].北京大学学报(自然科学版),2013,49(1):102-108. 被引量:54
  • 5昝红英,郭明,柴玉梅,吴云芳.新闻报道文本的情感倾向性研究[J].计算机工程,2010,36(15):20-22. 被引量:15
  • 6Xia R, Zong C Q, Li S S. Ensemble of feature sets and classification algorithms for sentiment classification [ J ]. Information Sciences, 2011,181 ( 6 ) : 1138-1152.
  • 7Gao C, Wang J, He Y, et al. Efficient incremental mining of frequent sequence generators [ C ]// The 16th Interna- tional Conference on Database Systems for Advanced Ap- plications. 2011 : 168-182.
  • 8Blei D M, Ng A Y, Jordan M I. Latent Dirichlet allocation [J] The Journal of Machine Learning Research, 2003,3: 993-1022.
  • 9Griffiths T L, Steyvem M. Finding scientific topics[J]. Proceedings of the National Academy of Sciences of the U- nited States of America, 2004,101 (Suppl 1 ) :5228-5235.
  • 10Maisie.HowNet中英文完整版[DB/OL].http://www.datatang.com/datares/go.aspx7zdataid=602147.2013·04.15.

二级参考文献73

共引文献702

同被引文献65

  • 1Adamopoulos P.What makes a great MOOC? An interdisciplinary analysis of student retention in online courses[C]//Proc of the 34th International Conference on Information Systems.2013:1-21.
  • 2Blei D M,Ng A Y,Jordan M I.Latent Dirichlet allocation[J].Journal of Machine Learning Research,2003(3):993-1022.
  • 3Hofmann T.Probabilistic latent semantic analysis[C]//Proc of the 22nd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval.Berkeley:ACM Press,1999:50-57.
  • 4Frigyik B A,KapilA A,Gupta M R.Introduction to the dirichlet distribution and related process,UWEETR-2010-0006[R].Washington DC:Department of Electrical Engineering,University of Washington,2010.
  • 5WeiI Xing,Croft W B.LDA-based document models for Ad-hoc retrieval[C]//Proc of the 29th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval.[S.l.]:ACM Press,2006:178-185.
  • 6Thakur G S,Tiwari R,Thai M T.Detection of local community structures in complex dynamic networks with random walks[J].IET Systems Biology,2009,3(4):266-278.
  • 7Bagrow J P.Evaluating local community methods in networks[J].Journal of Statistical Machanics,2008(5):56-62.
  • 8Alabert R,Jeong H,Barabasi A.The diameter of the World Wide Web[J].Nature,1999,401(6749):130-131.
  • 9王林,戴冠中.基于复杂网络社区结构的论坛热点主题发现[J].计算机工程,2008,34(11):214-216. 被引量:23
  • 10贾电如,李阳明.基于语句结构及语义相似度计算主观题评分算法的研究[J].信息化纵横,2009(5):5-7. 被引量:12

引证文献5

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部