期刊文献+

The Boundedness of Composition Operators on Triebel–Lizorkin and Besov Spaces with Different Homogeneities

The Boundedness of Composition Operators on Triebel–Lizorkin and Besov Spaces with Different Homogeneities
原文传递
导出
摘要 In this paper, we introduce new Triebel–Lizorkin and Besov Spaces associated with the different homogeneities of two singular integral operators. We then establish the boundedness of composition of two Calder′on–Zygmund singular integral operators with different homogeneities on these Triebel–Lizorkin and Besov spaces. In this paper, we introduce new Triebel–Lizorkin and Besov Spaces associated with the different homogeneities of two singular integral operators. We then establish the boundedness of composition of two Calder′on–Zygmund singular integral operators with different homogeneities on these Triebel–Lizorkin and Besov spaces.
作者 Wei DING
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2014年第6期933-948,共16页 数学学报(英文版)
基金 Supported by National Natural Science Foundation of China(Grant Nos.11271209 and 11371056)
关键词 Singular integral Triebel–Lizorkin spaces Besov spaces discrete Calderon's identity almost orthogonality estimates Singular integral,Triebel–Lizorkin spaces,Besov spaces,discrete Calderon's identity,almost orthogonality estimates
  • 相关文献

参考文献4

二级参考文献54

  • 1Gundy, R., Stein, E. M.: HP theory for the polydisk. Proe. Nat. Acad. Sci., 76, 1026-1029 (1979).
  • 2Carleson, L.: A counterexample for measures bounded on Hp for the bidisc. Mittag-Leffler Report No. 7, 1974.
  • 3Fefferman, R., Stein, E. M.: singular integrals on product spaces. Adv. Math., 45, 117-143 (1982).
  • 4Fefferman, R.: Harmonic Analysis on product spaces. Ann. of Math., 126, 109 130 (1987).
  • 5Chang, S-Y. A., Fefferman, R.: Some recent developments in Fourier analysis and H^P theory on product domains. Bull. Amer. Math. Soc., 12, 1-43 (1985).
  • 6Chang, S-Y. A., Fefferman, R.: The Calderon-Zygmund decomposition on product domains. Amer. J. Math., 104, 455-468 (1982).
  • 7Chang, S-Y. A., Feffermanl R.: A continuous version of duality of H^1 with BMO on the bidisc. Ann. of Math., 112, 179-201 (1980).
  • 8Journe, J. L.: Calderon-Zygmund operators on product spaces. Rev. Mat. Iberoamericana., 1, 55-92 (1985).
  • 9Journe, J. L.: Two problems of Calderon-Zygmund theory on product spaces. Ann. Inst. Fourier (Grenoble), 38, 111-132 (1988).
  • 10Pipher, J.: Journe's covering lemma and its extension to higher dimensions. Duke Math. J., 53, 683-690 (1986).

共引文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部