摘要
The sudden and violent nature of coal and gas outbursts continues to pose a serious threat to coal mine safety in China. One of the key issues is to predict the occurrence of outbursts. Current methods that are used for predicting the outbursts in China are considered to be inadequate, inappropriate or impractical in some seam conditions. In recent years, Huainan Mining Industry Group(Huainan) in China and the Commonwealth Scientific and Industrial Research Organisation(CSIRO) in Australia have been jointly developing technology based on gas content in coal seams to predict the occurrence of outbursts in Huainan. Significant progresses in the technology development have been made, including the development of a more rapid and accurate system in determining gas content in coal seams, the invention of a sampling-while-drilling unit for fast and pointed coal sampling, and the coupling of DEM and LBM codes for advanced numerical simulation of outburst initiation and propagation. These advances are described in this paper.
The sudden and violent nature of coal and gas outbursts continues to pose a serious threat to coal mine safety in China. One of the key issues is to predict the occurrence of outbursts. Current methods that are used for predicting the outbursts in China are considered to be inadequate, inappropriate or impractical in some seam conditions. In recent years, Huainan Mining Industry Group (Huainan) in China and the Commonwealth Scientific and Industrial Research Organisation (CSIRO) in Australia have been jointly developing technology based on gas content in coal seams to predict the occurrence of outbursts in Hua-inan. Significant progresses in the technology development have been made, including the development of a more rapid and accurate system in determining gas content in coal seams, the invention of a sam-pling-while-drilling unit for fast and pointed coal sampling, and the coupling of DEM and LBM codes for advanced numerical simulation of outburst initiation and propagation. These advances are described in this paper.