期刊文献+

Three-Step Difference Scheme for Solving Nonlinear Time-Evolution Partial Differential Equations

Three-Step Difference Scheme for Solving Nonlinear Time-Evolution Partial Differential Equations
下载PDF
导出
摘要 In this paper, a special three-step difference scheme is applied to the solution of nonlinear time-evolution equations, whose coefficients are determined according to accuracy constraints, necessary conditions of square conservation, and historical observation information under the linear supposition. As in the linear case, the schemes also have obvious superiority in overall performance in the nonlinear case compared with traditional finite difference schemes, e.g., the leapfrog(LF) scheme and the complete square conservation difference(CSCD) scheme that do not use historical observations in determining their coefficients, and the retrospective time integration(RTI) scheme that does not consider compatibility and square conservation. Ideal numerical experiments using the one-dimensional nonlinear advection equation with an exact solution show that this three-step scheme minimizes its root mean square error(RMSE) during the first 2500 integration steps when no shock waves occur in the exact solution, while the RTI scheme outperforms the LF scheme and CSCD scheme only in the first 1000 steps and then becomes the worst in terms of RMSE up to the 2500th step. It is concluded that reasonable consideration of accuracy, square conservation, and historical observations is also critical for good performance of a finite difference scheme for solving nonlinear equations. In this paper, a special three-step difference scheme is applied to the solution of nonlinear time-evolution equations, whose coefficients are determined according to accuracy constraints, necessary conditions of square conservation, and historical observation information under the linear supposition. As in the linear case, the schemes also have obvious superiority in overall performance in the nonlinear case compared with traditional finite difference schemes, e.g., the leapfrog(LF) scheme and the complete square conservation difference(CSCD) scheme that do not use historical observations in determining their coefficients, and the retrospective time integration(RTI) scheme that does not consider compatibility and square conservation. Ideal numerical experiments using the one-dimensional nonlinear advection equation with an exact solution show that this three-step scheme minimizes its root mean square error(RMSE) during the first 2500 integration steps when no shock waves occur in the exact solution, while the RTI scheme outperforms the LF scheme and CSCD scheme only in the first 1000 steps and then becomes the worst in terms of RMSE up to the 2500th step. It is concluded that reasonable consideration of accuracy, square conservation, and historical observations is also critical for good performance of a finite difference scheme for solving nonlinear equations.
出处 《Atmospheric and Oceanic Science Letters》 CSCD 2013年第6期423-427,共5页 大气和海洋科学快报(英文版)
基金 the Ministry of Science and Technology of China for the National Basic Research Program of China(973 Program,Grant No.2011CB309704)
关键词 three-step difference scheme NONLINEAR square conservation accuracy historical observations 非线性平流方程 有限差分格式 时间演化方程 偏微分方程 求解 均方根误差 观测资料 非线性方程组
  • 相关文献

参考文献3

二级参考文献8

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部