摘要
针对空气中温度差值难以捕捉的问题,以空气中温度分布的可视化作为研究对象,采用基于最大事后概率的最大似然估计算法,研究空气中温度分布图像化问题。可视化测量系统中,在被测区域设置32个收发分离的超声波换能器,基于一发多收模式实现渡越超声信号数据采集,通过实验获取16×16=256个渡越时间参数TOF(Time of Flight)。实验系统采用测量角度插补与渡越时间参数平行插补两种方法进一步补充成像所需渡越时间参数,确保重建图像可读性。对实验数据进行了基于最大似然估计算法的超声波CT图像重建,重建图像结果能成功分辨空气场温度值差异。实验结果表明,基于最大似然估计算法实现空气中温度差异可视化的有效性。
This research aims to at evaluate evaluating the temperature distribution in the air using an ultrasonic computed tomography imaging technique.The Maximum likelihood algorithm was is applied to ultrasonic time of flight (TOF) computed tomography (CT) for temperature distribution in the air based on maximum a posteriori.32 ultrasonic transducers (receive and transmission function separation) are set in measure area,ultrasonic signal which transits measure area with temperature difference is collected based on TOF,so we get 16 × 16 =256 TOF.Ultrasonic CT images are reconstructed by using the measured data,temperature differences in the air can successfully distinguish in the reconstructed image.Experimental results show that the Maximum likelihood expectation maximization algorithm for air temperature image reconstruction effectiveness.
出处
《实验室研究与探索》
CAS
北大核心
2014年第5期12-16,共5页
Research and Exploration In Laboratory
基金
国家自然科学基金项目(61302124
11274091)
江苏省自然科学基金项目(BK20130235)
江苏省高校自然科学基金项目(13KJB520006
12KJD510005)
常州市云计算与智能信息处理重点实验室项目(CM20123004)
江苏省"六大人才高峰"资助项目(DZXX-031)
关键词
最大似然估计算法
最大事后概率
空气温度可视化
数据插补
maximum likelihood
maximum a posteriori
air temperature visualization
time of flight interpolation