期刊文献+

一种新型光伏阵列最大功率点预测模型的研究 被引量:1

A Study on the New Max. Power Point Prediction Model of the Photovoltaic Array
下载PDF
导出
摘要 光伏阵列最大功率点预测在光伏发电控制系统具有重要地位,由于光伏阵列受到温度、光强、阴影等非线性因素的影响,传统的解析方法难以获得理想的预测结果。研究了一种基于遗传算法改进的BP网络光伏阵列最大功率点预测模型,利用遗传算法的全局搜索能力,对BP神经网络的权值和阈值进行优化,有效克服了BP网络容易陷入局部最小的问题。仿真表明,基于遗传算法优化的光伏阵列最大功率点预测BP网络具有良好的泛化能力和一定的有效性。 The prediction of maximum power point of the photovoltaic array holds an important position in the photovoltaic control system. As the photovoltaic array is influenced by non-linear factors such as temperature,light intensity and shadow,the traditional analytical method can hardly obtain ideal prediction results. Based on genetic algorithm,this paper presents an improved max. power point prediction model for BP network photovoltaic array,which,by using the global search ability of genetic algorithm,optimizes BP neural network weights and thresholds,thus effectively preventing the BP network from falling into local minimum. Simulation results show that the designed prediction method has good generalization ability and produces certain effect.
出处 《电气自动化》 2014年第3期54-56,70,共4页 Electrical Automation
关键词 太阳能 光伏阵列 BP算法 遗传算法 最大功率点预测 solar power photovoltaic array BP algorithm genetic algorithm maximum power point prediction
  • 相关文献

参考文献4

二级参考文献37

  • 1Theodore Amissah OCRAN,曹军义,曹秉刚,孙兴华.Artificial Neural Network Maximum Power Point Tracker for Solar Electric Vehicle[J].Tsinghua Science and Technology,2005,10(2):204-208. 被引量:3
  • 2Brambilla A. New approach to photovoltaic arrays maximum power point tracking [ C ]//Proceeding of 30^th IEEE Power Electronics Specialists Conference, Vol, 2. [ s. l. ] :IEEE, 1998:632-637.
  • 3Premrudeepreechacham S, Patanapirom N. Solar-array modelling and maximum power point tracking using neural networks [ R ]. Bologma: IEEE Bologna Power Tech Confference, 2003.
  • 4Mashaly H M, Sharal' A M, Mansour M, et al. A photovoltaic maximtini power tracking scheme using neural networks [ C ]//JProceedings of the 3rd IEEE-CCA, Vol. I. [ s. l. ] :IEEE, 1994 : 160-172.
  • 5Hiyama T. Evelluation of neural network based real time maximum power tracking controller for PV system [ J ]. IEEE Trans Energy Cony, 1995,10 ( 2 ) :543-548.
  • 6Hiyama T. Neural network based estimation of maximum power generation from PV module using environmental information[ J ]. IEEETrans Energy Cony, 1997,12 ( 3 ) : 241-247.
  • 7Walker G. Evaluating MPPT converter topologies using a MATLAB PV model [ J ]. J Electrical Electron Eng Australia IE Aust,2001,21 ( 1 ) :49-56,.
  • 8J.G.McGowan and J.F.Manwell. Hybrid Wind/PV/Diesel Power Systems Modeling and South American Applications[C]. WREC 1996.
  • 9A.ZAHEDI. Development of An Electrical Model For A PV/Battery System for Performance Prediction[J]. Renewable Energy, 1998, 15(1): 531-534.
  • 10Viorel Badescu. Dynamic model of a Complex System Including PV Cells, Electric Battery, Electrical Motor and Water Pump[J]. Energy,2003,28(12):1165-1181.

共引文献691

同被引文献11

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部