期刊文献+

大数据时代商业银行电子商务零售客户风险评分模型设计框架及实证分析 被引量:6

Model Design and Empirical Analysis of Risk Scoring on E-Commerce Retail Customers of Commercial Bank in the Era of Big Data
原文传递
导出
摘要 本文采用大数据相关思维为指导,采用相关数据挖掘技术,对商业银行电子商务平台零售客户的风险计量模型进行设计和构建。首先根据客户相关信息及行为变量,采用决策树方法将电子商务客户分为若干群体,并分析总结了不同客户群体的行为特征;然后通过分析电子商务平台客户的相关行为信息以及其在线下的金融产品交易活动,构建相关建模备选变量;在此基础上,采用国际先进银行通用的建模方法,以零售B2C类的消费客户为例,进行了风险评分模型实证分析。结果表明,通过大数据分析基础上的电子商务客户风险模型构建,具有较好的风险识别能力和区分度,各项检验结果较为合理。本研究对商业银行利用大数据思维构建风险管理工具以及提高电子商务平台的风险管理水平提供了实证支持,具有一定现实参考意义。 In this paper, risk measurement model of retail customers, who use e-commerce platform of commercial bank, is designed and built by using ideas on big data and techniques on data mining. First, according to the customer-related information and behavioral variables, e-commerce customers are classified into several groups based on the decision tree method. The behavior characters of different customer groups are also analyzed and summarized. Then, alternative variables of modeling are generated by examining the behavior of e-commerce platform users and their trading activities on financial products. Employing the modeling techniques widely adopted by international leading banks, the empirical analysis on risk scoring model is conducted by taking B2C consumer customers as an example. The results show that the risk model design of e-commerce customers based on big data analysis is capable of both identifying and distinguishing the risk with reasonable test results. This study which provides empirical evidence for the commercial banks to build risk management tools and improve risk management of e-commerce platform has realistic significance.
作者 黄昶君 王林
出处 《投资研究》 北大核心 2014年第4期16-26,共11页 Review of Investment Studies
关键词 大数据 电子商务 商业银行 B2C Big data E-commerce Commercial bank B2C
  • 相关文献

参考文献13

  • 1Li,S.,Shiue,W.and M.Huang,2006,"The Evaluation Of Consumer Loans Using Support Vector Machines,"Expert Sys-tems with Applications 30,pp.772-782.
  • 2Thurm,Scott,2011,"Next Frontier in Credit Scores:Prediceting Personal Behavior",Wall Street Journal.Pp.10.
  • 3Weiberger,David,2007,"Everything is Miscellaneous:The Power of the New Digital Disorder",Times,pp.113-130.
  • 4Watts,Duncan,2007,"Everything is Obvious Once You Know the Answer:How common sense Fails Us",Atlantic,2011.
  • 5Vlahos,James,2012,"The Department of Pre-Crime".Scientific American,PP.62-67.
  • 6Risenthal,Jonathan,2012,"Banking Special Report".The Economist,PP.05:7-8.
  • 7Rudin,Cynthin,2011,"21 st-Centnry Data Miners Meet 19th-Century Electrial Cables.Computer",6,PP.103-105.
  • 8Selezer,William,and Margo Anderson,2001,"The Dark Side of Numbers:The Role of Population Data Systems in Human Rights Abuses".Social Research.,6,PP,481-513.
  • 9Halevy,Alon,Peter Norvig,and Femando Pereira,2009,"The Unreasonable Effectiveness of Data".IEEE Intelligent Sys-terms,5,.PP.8-12.
  • 10Berk,Richard,2009,"The Role of Race in Forecasts of Violent Crime",Race and Social Problems,PP.231-242.

同被引文献37

引证文献6

二级引证文献44

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部