期刊文献+

混沌粒子群优化指数交叉熵的阈值分割

Exponential cross entropy thresholding based on chaotic particle swarm optimization
下载PDF
导出
摘要 为了提高指数交叉熵的阈值选取效率,提出了一种混沌粒子群优化指数交叉熵的阈值分割方法。首先导出指数交叉熵阈值选取方法,然后利用混沌粒子群算法对其进行优化。实验结果表明,相对于最大熵法和指数熵法,混沌粒子群优化指数交叉熵的阈值分割方法不仅分割结果精确,而且运行时间也相应缩短。 In order to improve exponential cross entropy threshold selection efficiency, exponential cross entropy thresholding based on chaotic particle swarm optimization is proposed. Firstly, exponential cross entropy threshold selection is derived, then chaotic particle swarm optimization is used to search for the best thresholds. A large number of experimental results show that exponential cross entropy thresholding based on chaotic particle swarm optimization can achieve superior segmented results and greatly reduce the running time, in contrast with the maximum entropy method and the exponential entropy method.
出处 《微型机与应用》 2014年第7期71-73,共3页 Microcomputer & Its Applications
基金 文件检验鉴定公安部重点实验室开放课题(10KFKT005)
关键词 阈值分割 指数交叉熵 混沌粒子群 image registration exponential cross entropy chaotic particle swarm
  • 相关文献

参考文献9

二级参考文献80

共引文献208

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部