期刊文献+

基于博弈模型的合作式粒子群优化算法 被引量:2

Improved Particle Swarm Optimization Algorithm Based on Game Model
下载PDF
导出
摘要 粒子群算法作为一种新兴的进化优化方法,能够大大减轻复杂的大规模优化问题的计算负担.根据博弈论的思想,在传统粒子群基础上提出了一种基于博弈模型的合作式粒子群优化算法,算法基于重复博弈模型,在重复博弈中利用一个博弈序列,使得每次博弈都能够产生最大效益,并得到了相应博弈过程的纳什均衡.通过典型基准测试函数对算法的性能进行对比实验,实验结果表明算法是可行的、有效的,对拓展粒子群算法研究具有重要的理论意义与实际意义. Particle Swarm algorithm as a new evolutionary optimization method can greatly reduce the computational burden of complex, large-scale optimization problems. This article is based on game theory. On the basis of the particle swarm it proposeda non-cooperative game model based on particle swarm optimization algorithm, it wses a game sequence repeated game model. And in repeated games, each game all hope to produce maximum benefits. Nash equilibrium of the corresponding game process. Function through multiple benchmarks, comparing with the performance of the algorithm experimental results show that the algorithm is feasible and effective. The study has important theoretical significance and practical significance onexpand swarm intelligence algorithm.
出处 《计算机系统应用》 2014年第6期170-174,共5页 Computer Systems & Applications
基金 河南省科技计划(102102210416)
关键词 非合作博弈 动态博弈 纳什均衡 粒子群优化算法 进化优化 non-cooperative game dynamic game nash equilibrium particle swarm optimization evolutionary optimization
  • 相关文献

参考文献10

  • 1Diosan L, Oltean M. What else is the evolution of PSO telling us. Journal of Artificial Evolution and Applications, 2008, 8(2): 1-12.
  • 2Rana S, Jasola S, Kumar R. A review on particle swarm optimization algorithms and their applications to data clustering. Artificial Intelligence Review, 2011,35(3): 211-222.
  • 3Liang JJ, Qin AK, Suganthan, PN. Comprehensive learning particle swarm optimizer for global 215 optimization of multimodal functions. IEEE Trans. on Evolutionary Computation, 2006, 10(3): 281-295.
  • 4Xu B, Guan Q, Chen K. Multi-agent coalition formation based on quantum-behaved particle swarm qptimization. Journal of Information & Computational Science, 2010, 7(5): 1059-1064.
  • 5Wang Y, Li B, Weise T, et al. Self-adaptive learning based particle swarm optimization. Information Sciences, 2011, 181(20): 4515-4538.
  • 6田有亮,马建峰,彭长根,姬文江.秘密共享体制的博弈论分析[J].电子学报,2011,39(12):2790-2795. 被引量:26
  • 7弗登博格,梯若尔著,黄涛译.博弈论.北京:中国人民大学出版社.2010.
  • 8刘玉岭,冯登国,吴丽辉,连一峰.基于静态贝叶斯博弈的蠕虫攻防策略绩效评估[J].软件学报,2012,23(3):712-723. 被引量:34
  • 9Nickabadi A, Ebadzadeh MM, Safabakhsh R. A novel particle swarm optimization algorithm with adaptive 220 inertia weight. Applied Soft Computing, 2011, 11(4): 3658-3670.
  • 10胥小波,郑康锋,李丹,武斌,杨义先.新的混沌粒子群优化算法[J].通信学报,2012,33(1):24-30. 被引量:126

二级参考文献36

  • 1高飞,童恒庆.基于改进粒子群优化算法的混沌系统参数估计方法[J].物理学报,2006,55(2):577-582. 被引量:47
  • 2Halpem J, Teague V. Rational secret sharing and multiparty computation: extended abstract [ A ]. Proceedings of the 36th Annual ACM Symposium on Theory of Computing[ C]. New York, USA: ACM,2004.623 - 632.
  • 3Abraham I,Dolev D, Gonen R, Halpem J. Distributed comput- ing meets game theory:Robust mechanisms for rational secret sharing and multiparty computation [ A ]. Proceedings of the 25th Annual ACM Symposium on Principles of Distributed Compufing[ C] .New York, USA: ACM,2006.53 - 62.
  • 4Lysyanskaya A, Triandopoulos N. Rationality and adversarial behaviour in multi-party computation (extended abstract )[ A]. CRYPIO2006[ C] .Heidelberg: Springer,2006.180 - 197.
  • 5Maleka S, Amjed S, Pandu Rangan C. Rational secret sharing with repeated games [ A ]. ISPEC2008 [ C ]. Heidelberg: Springer, 2008. 334 - 346.
  • 6Asharov G, Lindell Y. Utility dependence in correct and fair ra- tional secret sharing [ A ]. CRYtrIO2009 [ C ]. Heidelberg: Springer, 2009.559 - 576.
  • 7Osborne M.An Introduction to Game Theory[M]. Oxfor: Ox- ford University Press,2004.
  • 8KENNEDY J, EBERHART R C. Particle swarm optimization[A]. Proc of the First IEEE International Conference on Neural Networks[C]. Perth, Australia: IEEE Press, 1995. 1942-1948.
  • 9MODARES H, ALFI A, NAGHIBI-SISTANI M B. Parameter estimation of bilinear systems based on an adaptive particle swarm optimization[J]. Engineering Applications of Artificial Intelligence, 2010, 23(7) 1105-1111.
  • 10KARAKUZU C. Parameter tuning of fuzzy sliding mode controller using particle swarm optimization[J]. International Journal of Innovative Computing, Information and Control, 2010, 6(10):4755-4770.

共引文献183

同被引文献20

  • 1Kennedy J, Eberhart RC. Particle swarm optimization. Proc. IEEE International Conference on Neutral Networks. Perth, Australia. Nov.27-Dec.1, 1995. 1942-1948.
  • 2Tao Q, Chang HY, Yang Y. A rotary chaotic PSO algorithm for trustworthy scheduling of a grid workflow. Computers & Operations Research, 2011, 38(5): 824-836.
  • 3Wang GL, Zhao GQ, Li HP. Research on optimization design of the heating/cooling channels for rapid heat cycle molding based on response surface methodology and constrained particle swarm optimization. Expert Systems with Applications, 2011, 38(6): 6705-6719.
  • 4Gorai A, Ghosh A. Hue-preserving color image enhancement using particle swarm optimization. 2011 IEEE Recent Advances in Intelligent Computational Systems. Piscataway. IEEE. 2011. 563-568.
  • 5Li Y, Liang JX, Hu J. A multi-swarm cooperative hybrid particle swarm optimizer. The 6th International Conference on Natural Computation. 10-12 Aug. 2010. 2535-2539.
  • 6Asmara A, Krohling RA, Hoffmann F. Parameter tuning of a computed-torque controller for a 5 degree of freedom robot arm using co-evolutionary particle swarm optimization. Proc. IEEE Conference on Swarm Intelligence Symposium. Pasadena, USA. June. 8-10, 2005. 162-168.
  • 7Ren YM, Zhang YN, Meng QJ, Zhang L. Hyperspectral image classification based on multiple improved particle swarm cooperative optimization and SVM. The 21st International Conference on Pattern Recognition (ICPR). 11-15 Nov. 2012. 2274-2277.
  • 8Liang JJ, Suganthan PN. Dynamic multi-swarm particle swarm optimizer. Proc. of 2005 IEEE Conference on Swarm Intelligence Symposium. IEEE. 2005. 124-129.
  • 9Zhang Y, Gong DW, Ding ZH. Handling multi-objective optimization problems with a multi-swarm cooperative particle swarm optimizer. Expert Systems with Applications. 2011, 38(11): 13933-13941.
  • 10Holland JH. Adaptation in neural and artificial systems. Ann Arbor, Michigan: The University of Michigan Press, 1995.

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部