期刊文献+

Porous CuO nanowires as the anode of rechargeable Na-ion batteries 被引量:22

Porous CuO nanowires as the anode of rechargeable Na-ion batteries
原文传递
导出
摘要 We report the preparation of porous CuO nanowires that are composed of nanoparticles (-50 nm) via a simple decomposition of a Cu(OH)2 precursor and their application as the anode materials of rechargeable Na-ion batteries. The as-prepared porous CuO nanowires exhibit a Brunauer-Emmett-Teller (BET) surface area of 13.05 m^2.g^-1, which is six times larger than that of bulk CuO (2.16 m^2.g^-1). The anode of porous CuO nanowires showed discharge capacities of 640 mA.h.g^-1 in the first cycle and 303 mA.h.g^-1 after 50 cycles at 50 mA.g^-1 The high capacity is attributed to porous nanostructure which facilitates fast Na-intercalation kinetics. The mechanism of electrochemical Na-storage based on conversion reactions has been studied through cyclic voltammetry, X-ray diffraction (XRD), Raman spectroscopy, and high resolution transmission electron microscopy (HRTEM). It is demonstrated that in the discharge process, Na+ions first insert into CuO to form a CuⅡ1-x CuⅠ x O1-x/2solid and a Na2O matrix then CuⅡ1-xCu Ⅰ xO1-x/2 reacts with Na+ to produce Cu2O, and finally Cu2O decompose into Cu nanoparticles enclosed in a Na2O matrix. During the charge process, Cu nanopartides are first oxidized to generate Cu2O and then converted back to CuO. This result contributes to the design and mechanistic analysis of high-performance anodes for rechargeable Na-ion batteries.
出处 《Nano Research》 SCIE EI CAS CSCD 2014年第2期199-208,共10页 纳米研究(英文版)
基金 This work was supported by the National Basic Rese- arch Program of China (973 Program) (2011CB935900), the National Natural Science Foundation of China (NSFC) (51231003 and 21322101), the National "111" Project of China's Higher Education (B12015), and the Tianjin High-Tech Project (12ZCZDJC35300).
关键词 porous CuO nanowires anode materialelectrochemicalconversion reactions Na-ion batteries 钠离子电池 氧化铜 纳米线 可充电 多孔 阳极 Na 透射电子显微镜
  • 相关文献

同被引文献78

  • 1Kimal Chandula Wasalathilake,Henan Li,Li Xu,Cheng Yan.Recent advances in graphene based materials as anode materials in sodium-ion batteries[J].Journal of Energy Chemistry,2020,29(3):91-107. 被引量:11
  • 2肖敏,杜续生,孟跃中,龚克成.热处理条件对氧化石墨结构和导电性能的影响(英文)[J].新型炭材料,2004,19(2):92-96. 被引量:17
  • 3Cabana J, Monconduit L, Larcher D, et al. Beyond interca- lation-based Li-ion batteries: The state of the art and chal- lenges of electrode materials reacting through conversion reactions[J]. Advanced Materials, 2010, 22(35): E 170-E 192.
  • 4Gao X P, Yang H X. Multi-electron reaction materials for high energy density batteries[J]. Energy & Environmental Science, 2010, 3(2): 174-189.
  • 5Kim S W, Seo D H, Ma X H, et al. Electrode materials for rechargeable sodium-ion batteries: Potential alternatives to current lithium-ion batteries [J]. Advanced Energy Materi- als, 2012, 2(7): 710-721.
  • 6Armand M, Tarascon J M. Building better batteries[J]. Na- ture, 2008, 451(7179): 652-657.
  • 7Poizot P, Laruelle S, Grugeon S, et al. Nano-sized transi- tion-metal oxides as negative-electrode materials for lithi- um-ion batteries[J]. Nature, 2000, 407(6803): 496-499.
  • 8Chen Z X, Zhou M, Cao Y L, et al. In situ generation of few-layer graphene coatings on SnOz-SiC core-shell nano- particles for high-performance lithium-ion storage [J]. Ad- vanced Energy Materials, 2012, 2(1): 95-102.
  • 9Souza D C S, Pralong V, Jacobson A J, et al. A reversible solid-state crystalline transformation in a metal phosphide induced by redox chemistry[J]. Science, 2002, 296(5575): 2012-2015.
  • 10Gillot F, Monconduit L, Doublet M L. Electrochemical be- haviors of binary and ternary manganese phosphides [J]. Chemistry of Materials, 2005, 17(23): 5817-5823.

引证文献22

二级引证文献143

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部