期刊文献+

圆形微通道内压力驱动流的边界滑移效应及动电效应 被引量:1

Boundary slip effects and electrokinetic effects in pressure-driven flow through a circular microchannel
下载PDF
导出
摘要 采用层流Navier-Stokes方程和离子分布Boltzmann方程建立圆形微通道内压力驱动流的数学模型,分别采用Navier滑移条件和电流密度平衡条件描述微流动边界速度滑移和动电效应,应用有限元法分析边界效应对微流动的影响。结果表明:微流动受边界效应的作用不容忽视,圆形微通道边界滑移效应对流动有促进作用而动电效应有阻滞作用;当微通道内同时存在2种边界效应时,边界滑移效应对流动的影响随着壁面ζ电势的增大而逐渐减弱,在高壁面ζ电势时影响甚微,几乎可以忽略。 The Navier-Stokes equation for liquid flows and the Poisson-Bohzmann equation for ion distribution were established for a mathematic model of pressure-driven flow through circular microehannels. The boundary slip and electrokinetic effects were described by the Navier slip condition and electric current density balancing condition. Using the finite element simulation, the electrokinetic flow behaviors with wall velocity slip were discussed. The results showed that the boundary effects on fluid flow in circular microchannels could not be ignored, and the boundary slip effects promote the flow development while the electrokinetic effects restrain the development of liquid, and considered two kinds of boundary effects, the effect of boundary slip effects gradually weakened with the wall ζ potential, even it could be ignored under a high wall ζ potential.
出处 《南昌大学学报(工科版)》 CAS 2014年第2期139-142,156,共5页 Journal of Nanchang University(Engineering & Technology)
基金 国家自然科学基金重点资助项目(50730007) 国家自然科学基金资助项目(51165031)
关键词 边界滑移 动电效应 ζ电势 滑移速度 流动速度 boundary slip electrokinetic effects ζ potential slip velocity flow velocity
  • 相关文献

参考文献10

  • 1林建忠.微纳流动理论及应用[M].北京:科学出版社,2010.
  • 2冯焱颖,周兆英,叶雄英,汤扬华.微流体驱动与控制技术研究进展[J].力学进展,2002,32(1):1-16. 被引量:47
  • 3李战华,吴健康,胡国庆,等.微流控芯片中的流体流动[M].北京:科学出版社,2012.
  • 4RONALDFP.物理-化学流体动力学导论[M].戴干策,方图南,范自晖,译.上海:华东化工学院出版社,1992.
  • 5MALCOLM R, DALTON J E. Electroviscous effects in low Reynolds number liquid flow through a slit-like microflu- idic contraction[ J]. Chemical Engineering Science ,2007, 62:4229 - 4240.
  • 6BOCQUET L, CHARLAIX E. Nanofluidics, from bulk to interfaces [ J ]. Chemical Society Reviews, 2010,39 : 1073 - 1095.
  • 7COTrlN B C, CROSS B, STEINBERGER A,et al. Bound- ary slip on smooth hydrophobie surfaces:intrinsic effects and possible artifacts [ J ]. Physical Review Letters, 2005, 94(2):1 -4.
  • 8CHOI C H, ULMANELLA U, KIM J, et al. Effective slip and friction reduction in nanograted superhydrophobie mi- erochannels [ J ]. Physics Fluids,2006,18 ( 8 ) :087105.
  • 9CHURAEV N V,SOBOLEV V D, SOMOV A N. Slippage of liquids over lyophobie solid surfaces [ J ]. Journal of Colloid and Interface Science, 1984,97:574 - 581.
  • 10MALA M, LI D, WERNER C, et al. Flow characteristics of water through a mieroehannel between two parallel plates with electrokinetie effects [ J ]. International Journal of Heat and Fluid Flow, 1997,18 (5) :489 - 496.

二级参考文献55

  • 1[1]Gad-el-Hak Mohamed. The fluid mechanics of microdevices-The Freeman Scholar Lecture. Journal of Fluids Engineering. 1999, 121:5~33
  • 2[2]Ho C M, Tai Y C. Micro-Electro-Mechanical systems (MEMS) and fluid flows. Annual Review of Fluid Mechanics,998, 30:579~612
  • 3[3]Freemantle M. Downsizing chemistry. C & EN, 1999, 77(8): 27~36
  • 4[4]Papautsky I, Brazzle J, Ameel T, Frazier A B. Laminar fluid behavior in microchannels using micropolar fluid theory. Sensors and Actuators A: Physical, 1999, 73(1-2): 101~108
  • 5[5]Jiang X N, Huang X Y, Liu C Y, Zhou Z Y, Li Y, Yang Y. Micronozzle/diffuser flow and its application in micro valveless pumps. Sensors and Actuators A: Physical, 1998, 70(1-2): 81~87
  • 6[6]Pfahler J, Harley J C, Bau H, Zemel J N. Gas and liquid flow in small channels. ASME-DSC, 1991, 32:49~60
  • 7[7]Gau H, Herminghaus S, Lenz P, Lipowsky R. Liquid morphologies on structured surfaces: from microchannels to microchips. Science, 1999, 283:46~49
  • 8[8]Grunze M. Driven liquids. Science, 1999, 283:41~42
  • 9[9]Gallardo B S, Gupta V K, Eagerton F D, Jong L I, Craig V S, Shah R R, Abbott N L. Electrochemical principles for active control of liquids on submillimeter scales. Science, 1999, 283:57~60
  • 10[10]Chaudhury M K, Whitesides G M. How to make water run uphill. Science, 1992, 256:1539~1541

共引文献63

同被引文献13

  • 1吴健康,王贤明.生物芯片微通道周期性电渗流特性[J].力学学报,2006,38(3):309-315. 被引量:14
  • 2Ramos A, Morgan H, Green N G, et al. AC electrokinetics: a review of forces in microelectrode structures[J]. Journal of Physics D, 1998, 31 (18) : 2338-2353.
  • 3Ramos A, Morgan H, Green N G, et al. AC Electric-Field-Induced t Fluid Flow in Microelectrodes[J]. Journal of Colloid and Interface Science, 1999, 217 (2) : 420-422.
  • 4Erickson D, Li D. Analysis of alternating current electroosmotic flows in a rectangular microchannel[J]. Langmuir, 2003 ( 19 ) : 5421-5430.
  • 5Yang J, Bhattacharyya A, Masliyah .1 H, et al. Oscillating laminar electrokinetic flow in infinitely extended rectangular microchannels[J]. Journal of Colloid and Interface Science, 2003, 261 (1) : 21-31.
  • 6Marcos, Yang C, Ooi T K, et al. Frequency-dependent laminar electroosmotic flow in a closed-end rectangular microchannel[J]. Journal of Colloid and Interface Science, 2004, 275 ( 2 ) : 679-698.
  • 7Reppert P M , Morgan F D. Frequency-Dependent Electroosmosis[J]. Journal of Colloid and Interface Science, 2002, 254 (2) : 372-383.
  • 8Oddy M H, Santiago J G, Mikkelsen J C. Electrokinetic instability mieromixing[J]. Analytical Chemistry, 2001, 73 ( 24 ) : 5822-5832.
  • 9杨大勇,刘莹.微通道中电渗流滑移现象的数值模拟[J].润滑与密封,2010,35(5):18-21. 被引量:2
  • 10姜洪源,李姗姗,侯珍秀,任玉坤,孙永军.非对称电极表面微观形貌对交流电渗流速的影响[J].物理学报,2011,60(2):164-169. 被引量:3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部