期刊文献+

Painlev Property, Bcklund Transformations and Rouge Wave Solutions of (3+1)-Dimensional Burgers Equation

Painlev Property, Bcklund Transformations and Rouge Wave Solutions of (3+1)-Dimensional Burgers Equation
原文传递
导出
摘要 Burgers equation is the simplest one in soliton theory, which has been widely applied in almost all the physical branches. In this paper, we discuss the Painleve property of the (3+1)-dimensional Burgers equation, and then Becklund transformation is derived according to the truncated expansion of the obtained Painleve analysis. Using the Backlund transformation, we find the rouge wave solutions to the equation via the multilinear variable separation approach. And we aiso give an exact solution obtained by general variable separation approach, which is proved to possess abundant structures.
机构地区 Department of Physics
出处 《Communications in Theoretical Physics》 SCIE CAS CSCD 2014年第6期663-668,共6页 理论物理通讯(英文版)
基金 Supported by National Natural Science Foundation of China under Grant Nos.11175092,11275123,11205092 Ningbo University Discipline Project under Grant No.xkzl1008 K.C.Wong Magna Fund in Ningbo University
关键词 (3 1)-dimensional Burgers equation Painlev5 analysis B/icklund transformations rouge wavesolution Burgers方程 性质 Painlevé分析 Backlund变换 分离变量法 高棉 孤立子理论 多线性
  • 相关文献

参考文献18

  • 1T. Beatus, T. Tlusty, and R. Bar-Ziv, Phys. Rev. Lett 103 (2009) 114502.
  • 2M. Basto, V. Semiao, and F. Math. 231 (2009) 793.
  • 3M.M. Rashidi and E. Erfani 180 (2009) 1539.
  • 4W.M. Moslem and R. Sabry, 36 (2008) 628.
  • 5Calheiros, J. Comput. Appl Comput. Phys. Commun Chaos, Solitons & Fractals E. Benton and G.W. Platzman, Quart. Appl. Math. 30 (1972) 195.
  • 6S.Y. Lou and Z.J. Lian, Chin. Phys. Lett. 22 (2005) 1.
  • 7J. Weiss, M. Tabora, and J. Carnevale, J. Math. Phys. 24 (1983) 522.
  • 8J. Weiss, J. Math. Phys. 24 (1983) 1405.
  • 9Y. Jin, M. Jia, and S.Y. Lou, Commun. Theor. Phys. 58 (2012) 795.
  • 10X.Y. Tang, S.Y. Lou, and Y. Zhang, Phys. Rev. E 66 (2002) 046601.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部