摘要
In this paper, we present a parallel quasi-Chebyshev acceleration applied to the nonover- lapping multisplitting iterative method for the linear systems when the coefficient matrix is either an H-matrix or a symmetric positive definite matrix. First, m parallel iterations are implemented in m different processors. Second, based on l1-norm or l2-norm, the m opti- mization models are parallelly treated in m different processors. The convergence theories are established for the parallel quasi-Chebyshev accelerated method. Finally, the numeri- cal examples show that the parallel quasi-Chebyshev technique can significantly accelerate the nonoverlapping multisplitting iterative method.
In this paper, we present a parallel quasi-Chebyshev acceleration applied to the nonover- lapping multisplitting iterative method for the linear systems when the coefficient matrix is either an H-matrix or a symmetric positive definite matrix. First, m parallel iterations are implemented in m different processors. Second, based on l1-norm or l2-norm, the m opti- mization models are parallelly treated in m different processors. The convergence theories are established for the parallel quasi-Chebyshev accelerated method. Finally, the numeri- cal examples show that the parallel quasi-Chebyshev technique can significantly accelerate the nonoverlapping multisplitting iterative method.