期刊文献+

多晶硅炉氩气导流系统设计与数值模拟优化 被引量:3

Design and Numerical Optimization of Ar Flow Guiding System in Polysilicon Furnace
下载PDF
导出
摘要 在DSS法多晶硅生长中,为了降低氧碳含量,作者利用CGSim软件,分析了三种传统氩气导流系统的优缺点,以此为基础设计了一种中心和侧面双排气的新型导流系统,并对其进行了设计和数值模拟优化。模拟得出以下结论:多晶铸锭炉三种传统氩气导流系统中,石墨坩埚上部开大孔且有盖板时,有利于控制氧碳含量和固/液界面;新型多晶铸锭炉氩气导流系统中,中心氩气进口管伸入上盖板时,有利于降低多晶硅的氧碳含量;随着石墨坩埚上部开口高度h'逐渐增大,中心出口氩气流速逐渐减小,侧面出口氩气流速增大,当h'=20 mm时,有利于降低多晶硅的氧碳含量。研究结果为生长高质量的多晶硅提供了理论依据。 In order to decrease the O/C concentration in polysilicon growth processing, numerical analysis of three traditional Ar flow guide was provided by CGSim software. A new type of Ar flow guide with both center and side argon exit was designed and numerical optimized on the basis of above analysis. The modeling results showed that among the three traditional Ar flow guide system in DSS furnace, the upper graphite crucible with large hole and cover is better for the control of oxygen/carbon and the solid/ liquid interface. In the new design, with the increasing of the exit height on the upper graphite crucible, h', the central Ar flow rate is decreasing while the side is increasing. It is more favorable for the decrease of O/C concentration when the central Ar inlet Theoretical basis is provided by the results for the tube insert into the upper cover and h = 20 mm. growth of high quality muhicrystalline silicon.
出处 《人工晶体学报》 EI CAS CSCD 北大核心 2014年第5期1236-1242,共7页 Journal of Synthetic Crystals
基金 国家自然科学基金青年基金(51206069) 高等学校博士学科点专项科研基金(20123227120017) 江苏省自然科学基金青年基金(BK2012295) 江苏大学高级专业人才科研启动基金(1281130015) 江苏省博士后科研资助计划(1301049C)
关键词 多晶硅 数值模拟 氩气导流 液界面 polysilicon numerical simulation Ar flow guide solid/meh interface
  • 相关文献

参考文献27

  • 1季尚司,左然,苏文佳,韩江山.石英坩埚表面涂层对铸造多晶硅生长中杂质传输的影响[J].人工晶体学报,2013,42(10):2177-2182. 被引量:5
  • 2Teng Y Y, Chen J C, Lu C W, et al. Effects of the Furnace Pressure on Oxygen and Silicon Oxide Distributions during the Growth of Muhicrystalline Silicon Ingots by the Directional Solidification Process[ J]. J. Crystal Growth,2011,315:224-229.
  • 3娄中士,左然,苏文佳,杨琳.大晶粒多晶硅铸锭生长的热场设计与模拟[J].人工晶体学报,2011,40(6):1602-1606. 被引量:22
  • 4Liu L, Nakano S, Kakimoto K. Dynamic Simulation of Temperature and Iron Distributions in a Casting Process for Crystalline Silicon Solar Cells with a Global Model[J]. J. Crystal Growth,2006,292:515-518.
  • 5Liu L, Nakano S, Kakimoto K. Carbon Concentration and Particle Precipitation during Directional Solidification of Muhicrystalline Silicon for Solar Cells[ J]. J. Crystal Growth,2008,310:2192-2197.
  • 6Kvande R, Mjos O, Ryningen B. Growth Rate and Impurity Distribution in Multicrystalline Silicon for Solar Cells[ J]. Materials Science and Engineering, 2005,413 : 545 -549.
  • 7曾庆凯,关小军,潘忠奔,张怀金,王丽君,禹宝军,刘千千.Ф400mm直拉硅单晶生长过程中氧浓度对微缺陷影响的数值模拟[J].人工晶体学报,2011,40(5):1150-1156. 被引量:9
  • 8苏文佳,左然,Vladimir Kalaev.单晶炉导流筒、热屏及炭毡对单晶硅生长影响的优化模拟[J].人工晶体学报,2010,39(2):524-528. 被引量:25
  • 9Saitoh T, Wang X, Hashigami H, et al. Suppression of Light Degradation of Carrier Lifetimes in Low-Resistivity CZ-Si Solar Cells [ J ]. Solar Energy Materials and Solar Cells ,2001,65:277-285.
  • 10Yang D, Li L, Ma X, et al. Oxygen-related Centers in Muhicrystalline Silicon[J]. Solar Energy Materials and Solar Cells,2000,62:37-42.

二级参考文献76

共引文献60

同被引文献21

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部