摘要
为了用飞行时间法精确测量中子能谱,从俄罗斯Efremov电物理所引进了一台纳秒脉冲中子发生器。该中子发生器采用聚束系统产生纳秒脉冲束流,其中的纳秒脉冲信号源、高频聚束电源、负反馈调节系统等关键设备都是自主研制的。采用双扫描技术解决了聚束电源电压过高的问题,采用负反馈技术使纳秒脉冲聚束系统长期稳定工作。为了测量纳秒脉冲束流,研制了快脉冲同轴靶测量装置,测得中子发生器的离子束流脉冲半高全宽为1.5 ns,脉冲重复频率为1kHz-4MHz,束斑直径为10 mm。由于采用了电子回旋共振离子源(Electron Cyclotron Resonance,ECR),所以该中子发生器具有发射度小、能散小、无灯丝、可长时间连续工作的优点,是中子物理研究的良好实验平台。
Background: In order to accurately measure the neutron spectrum using time-of-flight method, a nanosecond pulse neutron generator is introduced from Efremov Institute of Electric Physics, Russia. Purpose: The nanosecond pulse ion beam current is generated by a bunching system. Some key equipments (nanosecond pulse signal source, high frequency bunching power supply, adjustment system of the negative feedback, etc.) are developed by ourselves for the localization of the components. Methods: The problem of high bunching power supply voltage is solved with bidirectional scanning technology. The negative feedback technology makes the nanosecond pulse bunching system of long-term stability. In order to measure the nanosecond pulse beam, a fast pulse Faraday cup measurement device is developed. Results: The Full Width at Half Maximum (FWHM) of the neutron generator ion beam pulse is 1.5 ns, and the pulse repetition frequency-range is 1 kHz-4 MHz, beam spot diameter is about 10 mm. Conclusion: Because the Electron Cyclotron Resonance (ECR) ion source is used in neutron generator, it has a number of advantages, such as small emittance, small energy divergency, no filament and long-time continuous working stability, which is a good experimental device for neutron physical research.
出处
《核技术》
CAS
CSCD
北大核心
2014年第6期34-38,共5页
Nuclear Techniques
关键词
聚束
离子束流
纳秒脉冲
中子发生器
Bunching system, Ion beam, Nanosecond pulse, Neutron generator