期刊文献+

基于图像复杂度和贝叶斯的图像自动标注 被引量:2

Automatic image annotation based on image complexity and Bayesian
下载PDF
导出
摘要 为提高图像标注的准确率,提出了根据图像复杂度采用相应视觉特征表示机制的方法。对待标注的简单图像,直接提取其全局特征信息;对待标注的复杂图像,采用分割、过滤技术处理后,提取每个分割块的局部特征信息。通过训练图像数据学习了贝叶斯分类模型,用该分类模型对未标注图像进行标注。实例验证了该方法比采用单一视觉特征表示机制方法具有更好的标注效果。 To improve the accuracy of image annotation,corresponding visual feature representation mechanisms based on image complexity is proposed.Global feature of unmarked simple image was extracted directly.The technology of segmentation and filtration was applied to unmarked complex image,then local feature of each block is extracted.Bayesian classification model witch can annotate the unlabeled image was learnt through training image data,Finally the experiment results showed that the proposed method could achieve better annotation effect than that using only one visual express mechanism.
出处 《计算机工程与设计》 CSCD 北大核心 2014年第6期2100-2103,共4页 Computer Engineering and Design
基金 国家自然科学基金项目(61170145) 教育部高等学校博士点专项基金项目(20113704110001) 山东省自然科学基金 科技攻关计划基金项目(ZR2010FM021 2008B0026 2010G0020115)
关键词 贝叶斯分类器 颜色特征 纹理特征 图像分割 图像聚类 图像标注 Bayesian classifier color feature texture feature image segmentation image clustering image annotation
  • 相关文献

参考文献14

二级参考文献187

共引文献622

同被引文献25

  • 1赵杰文,方明,刘木华,陈全胜,李鹏飞.基于Ohta和RGB颜色空间牛胴体背长肌的分割[J].江苏大学学报(自然科学版),2006,27(3):189-192. 被引量:5
  • 2ZIVKOVIC Z. Improved adaptive Gaussian mixture mod- el for background subtraction [ C ]//Proceedings of the 17th International Conference on Pattern Recognition, 23- 26 August 2004. Piscataway, N.J.:IEEE,20IM. 28-31.
  • 3TSAI L W,HSIEH J W,FAN K C. Vehicle detection using normalized color and edge map [J]. IEEE Trans- actions on Image Processing, 2007,16 (3) : 850-864.
  • 4WANG X Y, ZHANG J L. A traffic incident detection method based on wavelet Mallat algorithm [C]//Pro- ceedings of the 2005 IEEE Mid-Summer Workshop on Soft Computing in Industrial Applications, 28-30 June 2005Piscataway, N.J.:IEEE,2005.166-172.
  • 5CHENG S C, YANG C K. A fast and novel technique for color quantization using reduction of color space di- mensionality[J]. Pattern Recognition Letters, 2001, 22 (8) : 845-856.
  • 6BOYKOV Y, VEKSLER O, ZABIH R. Fast approxi-mate energy minimization via graph cuts[J]. IEEE Trans- actions on PMAL Pattern Analysis and Machine Intel- ligence, 2001,23(11 ) : 1222-1239.
  • 7Herout A,Dubská M,Havel J.Review of Hough transformfor line detection[M].Real-time detection of lines andgrids.London:Springer,2013:3-16.
  • 8Dalal N,Triggs B.Histograms of oriented gradients for humandetection[C].IEEE Computer Society Conference on ComputerVision and Pattern Recognition,2005,1:886-893.
  • 9Mizuno K,Terachi Y,Takagi K,et al.Architectural studyof HOG feature extraction processor for real-time objectdetection[C].2012 IEEE Workshop on Signal ProcessingSystems(SiPS),2012:197-202.
  • 10Lai C Q,Teoh S S.A review on pedestrian detection techniquesbased on histogram of oriented gradient feature[C].2014 IEEE Student Conference on Research and Development(SCOReD),2014:1-6.

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部