期刊文献+

基于BP-MC模型的大型机电设备备件需求预测研究 被引量:2

The forecasting research for the electromechanical equipment spare parts demand based on the BP neural network model and markov chain
下载PDF
导出
摘要 针对大型机电设备备件需求具有非线性和随机波动性的特点,建立基于马尔科夫链修正的BP神经网络预测模型,以提高模型的预测精度。通过对训练样本的学习,利用BP神经网络实现了对备件需求时间序列的滚动预测,同时得到了实测值与预测值的相对误差;在此基础上利用马尔科夫链对相对误差进行修正,有效地提高了预测结果的精度。并将该模型应用于实际预测中,结果表明该模型优于BP神经网络单项预测模型,具有精度高、科学可靠的特点,为大型机电设备备件需求预测提供了新的途径。 According to the demand of the Electromechanical equipment spare parts which has the characteristics of nonlinear and stochastic volatility; the proposed model was conducted to improve the prediction accuracy of the model, based on the BP neural network prediction model and the Markov Chain. By studying the training sample, the BP neural network realizes the rolling forecasts of time sequence for the demand of spare parts. At the same time the relative error between measured and predicted is got. Then Markov Chain is used to analysis the relative error correction. The model effectively improves the precision of predicted results. It is applied in actual forecasting. The results show that the proposed model is superior to the BP neural network prediction model, which provides a new way to predict spare parts demand of electromechanical equipment with the characteristics of high precision, reliability and scientific nature.
作者 王静涛 许丹
出处 《电子设计工程》 2014年第11期155-158,共4页 Electronic Design Engineering
关键词 BP神经网络 马尔科夫链 设备备件 需求预测 BP neural network Markov chain equipment spare parts demand forecastin
  • 相关文献

参考文献11

  • 1Gup ta U C,T Rao.On the M/G/I machine interference model with Spares [J].European Journal of Operational Research,1996,89(1): 164-171.
  • 2马秀红,宋建社,董晟飞.基于回归分析的备件故障率预测模型[J].计算机仿真,2003,20(11):6-8. 被引量:17
  • 3Croston JD. Forecasting and stock control for intermittent demands [J].Operational Research Quarterly,1972,23(3):289-303.
  • 4Rajashree K,Pakkala TPM.A Bayesian approach to dynamic in ventory model under an unknown demand distribution [J]. Computers & Operations Research,2002(29):403-422.
  • 5Ghobbar A, Friend C H. Evaluation of forecasting methods for intermittent parts demand in the field of aviation: a predictive model [J]. Computers &Operations Research,2003(30):2097-2110.
  • 6Willemain TR, Smart C N, Sehwarz H F.A new approach to forecasting intermittent demand for service parts inventories [J]. International Journal of Forecasting,2004(20):375-387.
  • 7史耀媛,史忠科.基于非单点模糊正则网络的时间序列预测模型[J].西北大学学报(自然科学版),2006,36(6):887-890. 被引量:7
  • 8徐廷学,杜峻名,蓝天.基于马尔科夫与蒙特卡罗仿真的导弹装备备件需求量预测[J].兵工自动化,2011,30(10):85-87. 被引量:8
  • 9Stitson MO,Weston J A E, Gammerman A,et al Theory of Support Vector Machines[R].Technical Report CSD-TD-96-17,Royal Holloway, University of London,1996.
  • 10任博,张恒喜,苏畅.基于支持向量机的飞机备件需求预测[J].火力与指挥控制,2005,30(3):78-80. 被引量:30

二级参考文献24

  • 1谢佩军,计时鸣,张利.VC++与MATLAB混合编程的探讨[J].计算机应用与软件,2006,23(2):128-130. 被引量:26
  • 2贾锐,宋志宏,秦传锋.基于案例的新型舰船备件需求量的预测模型[J].船海工程,2006,35(2):70-72. 被引量:10
  • 3秦翔宇,宋一中.基于Visual Baisc 6.0开发平台的低消耗弹药供应仿真模型研究[J].微计算机信息,2006(08S):281-282. 被引量:2
  • 4[4]汪荣鑫著.数理统计[M].西安:西安交通大学出版社,1996.
  • 5LuoBin, LiJun. Validity study by Monte Carlo method of an analytical theory for photon correlation diffusion in multilayered media[C]. Biophotonics and New Therapy Frontiers, San Diego: SPIE. 2006:363-371.
  • 6许东 吴铮.基于MATLAB6,X的系统分析与设计[M].西安:西安电子科技大学出版社,2002.13-18.
  • 7王立新.模糊系统与模糊控制[M].北京:清华大学出版社,2003..
  • 8范明 孟小峰.数据挖掘概念与技术[M].北京:机械工业出版社,2001..
  • 9Stitson M O, Weston J A E,Gammerman A,et al.Theory of Support Vector Machines [R]. Technical Report CSD-TD-96-17 [R]. Royal Holloway,University of London 1996.
  • 10Scholkopf B, Bartlett P, Smola A, et al. Support Vectdr Regression with Automatic Accuracy Control [A].Proceedings of the 8th International Conference on Artificial Neural Networks,Perspectives in Computing[C], Berlin, Springer Verlag. 1998b : 111-166.

共引文献69

同被引文献14

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部