期刊文献+

内送粉超音速等离子喷涂颗粒飞行状态分析 被引量:5

In-Flight Particle Behavior in Internal Powder Injection Supersonic Plasma Spray
下载PDF
导出
摘要 针对超音速等离子喷涂过程中飞行颗粒与气流相互作用过程难以从实验获得的问题,采用数值计算方法,对以内送粉形式加入的原料颗粒的飞行状态进行跟踪分析,并利用SprayWatch-2i仪对飞行颗粒进行在线监测.计算得到了粒子的动力学和热力学行为以及撞击基体前的速度和温度分布,发现颗粒在喷涂距离为80~i00 mm的速度和温度最大,这与实验收集到的此范围内单个颗粒的形态相符,可选择此范围为最佳喷涂距离.通过分析韦伯数以及小直径颗粒的速度分布得出,在内送粉超音速等离子喷涂过程中,颗粒在喷枪内部和近出口位置会发生破碎细化和雾化,这与实验观测的结果一致.该计算及分析结果可为颗粒在射流中的传热传质研究提供参考,为获得高质量涂层提供理论依据. To investigate the thermal and dynamic behaviors of in-flight particles in plasma flow the velocity and temperature before impinging plate,and the trajectories of particles injected by inner channel are analyzed for whole supersonic plasma flow,the actual in-flight particles are online monitored by SprayWatch-2i.Numerical test result indicates that both particle velocity and temperature achieve the maximum at the distance of 80~100 mm,which coincides with the status of observed individual particle in the experiments.So this range of 80~ 100 mm can be taken as the best spraying distance.According to the analysis for Weber number and velocity distribution of particles with small diameters,particles are melted and refined inside the gun or near the gun exit in internal powder injection supersonic plasma spray,which supports the experimental results on heat and mass transfer of particles.
出处 《西安交通大学学报》 EI CAS CSCD 北大核心 2014年第6期91-97,共7页 Journal of Xi'an Jiaotong University
基金 国防"973计划"资助项目(613112-K3) 西安交通大学金属材料强度国家重点实验室开放研究项目(20131310)
关键词 等离子喷涂 内送粉 颗粒 超音速 plasma spray inner powder injection particle supersonic
  • 相关文献

参考文献17

  • 1尹志坚,王树保,傅卫,谭兴海,陶顺衍,丁传贤.热喷涂技术的演化与展望[J].无机材料学报,2011,26(3):225-232. 被引量:38
  • 2PFENDER E. Thermal plasma technology: where do we stand and where are we going [J]. Plasma Chemistry and Plasma Processing, 1999, 19(1): 1-31.
  • 3韩志海,王海军,白宇,丁春华,徐滨士.超音速等离子喷涂制备细密柱晶结构热障涂层研究进展[J].热喷涂技术,2011,3(2):1-14. 被引量:18
  • 4BAI Y, HAN Z H, LI H Q, et al. Structure-property differences between supersonic and conventional atmospheric plasma sprayed zirconia thermal barrier coatings [J]. Surface and Coatings Technology, 2011, 205(13/14): 3833-3839.
  • 5冯拉俊,曹凯博,雷阿利.等离子喷涂陶瓷粒子加热加速行为的数值模拟[J].热加工工艺,2006,35(11):46-48. 被引量:7
  • 6CHYOU Y P, PFENDER E. Behavior of particulates in thermal plasma flows [J]. Plasma Chemistry and Plasma Processing, 1989, 9(1): 45-71.
  • 7XIONG H B, ZHENG L L, LI L, et al. Melting and oxidation behavior of in-flight particles in plasma spray process [J]. International Journal of Heat and Mass Transfer, 2005, 48(25/26): 5121-5133.
  • 8ZHAO Weitao, WU Jiuhui, BAI Yu, et al. Melting refining mechanisms in supersonic atmospheric plasma spraying [J]. Plasma Chemistry Plasma Process, 2013, 32(6): 1227-1242.
  • 9KANTA A F, PLANCHE M P, MONTAVON G, et al. In-flight and upon impact particle characteristics modelling in plasma spray process [J]. Surface & Coatings Technology, 2010, 204(9/10): 1542-1548.
  • 10杨庆功,李萌盛.双流体模型模拟喷涂飞行区内的速度分布[J].合肥工业大学学报(自然科学版),2006,29(9):1120-1123. 被引量:9

二级参考文献85

共引文献67

同被引文献49

引证文献5

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部