期刊文献+

基于Shearlet域各向异性扩散和稀疏表示的图像去噪 被引量:4

Image Denoising Based on Anisotropic Diffusion and Sparse Representation in Shearlet Domain
下载PDF
导出
摘要 为了更有效地去除图像噪声,同时更好地保留图像边缘细节信息,提出了一种基于shearlet域各向异性扩散和稀疏表示的图像去噪方法.首先对含噪图像进行非下采样shearlet变换(nonsubsampled shear1et transform,NSST),将图像分解为低频分量和多个高频分量.低频分量中包含图像信号的主要能量以及少量的噪声,而高频分量中含有大部分噪声和图像边缘信息.然后,利用K-奇异值分解(K-singularvalue decomposition,K-SVD)算法去除低频分量中的噪声,各个方向的高频分量则通过核各向异性扩散(kernel anisotropic diffusion,KAD)算法进行去噪.最后,对处理过的低频分量和高频分量进行非下采样shearlet反变换(inverse nonsubsampled shearlet transform,INSST),得到重构图像,从而有效地去除图像噪声,保留图像边缘细节.实验结果表明,与小波扩散去噪法、shearlet硬阈值去噪法、K-SVD稀疏去噪法、小波域稀疏去噪法相比,该方法的去噪能力更强,并能更好地保留图像纹理细节特征,改善图像视觉效果. To suppress image noise effectively and better preserve edge details, an image denoising method based on anisotropic diffusion and sparse representation in the shearlet domain is proposed. The noisy image is first decomposed into a low frequency component and several high frequency components by non-subsampled shearlet transform (NSST). The main energy of the image information is contained in the low frequency component, while the edge information and most of noise are contained in high frequency components. The K-singular value decomposition (K-SVD) algorithm is used to remove noise in low frequency component. The kernel anisotropic diffusion (KAD) algorithm is used to reduce noise in each high frequency component. The reconstructed image is obtained by inverse non-subsampled shearlet transform (INSST) for the processed low frequency and high frequency components. Noise in the image is effectively suppressed, and edge details are preserved satisfactorily. Experimental results show that, compared with the denoising methods such as wavelet combining with nonlinear diffusion method, shearlet hard threshold method, K-SVD sparse denoising method and sparse redundant denoising method in wavelet domain, the proposed method has better performance both in noise reduction and detail preservation.
出处 《应用科学学报》 CAS CSCD 北大核心 2014年第3期221-228,共8页 Journal of Applied Sciences
基金 国家自然科学基金(No.60872065) 深圳市城市轨道交通重点实验室开放基金(No.SZCSGD201306) 江苏省粮油品质控制及深加工技术重点实验室开放基金(No.LYPK201304) 江苏高校优势学科建设工程资助
关键词 图像去噪 非下采样shearlet变换 核各向异性扩散 K-奇异值分解 稀疏表示 image deniosing, non-subsampled shearlet transform (NSST), kernel anisotropic diffusion (KAD),K-singular value decomposition (K-SVD), sparse representation
  • 相关文献

参考文献17

二级参考文献182

共引文献135

同被引文献48

  • 1张恒磊,张云翠,宋双,刘天佑.基于Curvelet域的叠前地震资料去噪方法[J].石油地球物理勘探,2008,43(5):508-513. 被引量:34
  • 2张军华,吕宁,田连玉,雷凌.地震资料去噪方法综合评述[J].石油地球物理勘探,2005,40(B11):121-127. 被引量:34
  • 3高静怀,毛剑,满蔚仕,陈文超,郑庆庆.叠前地震资料噪声衰减的小波域方法研究[J].地球物理学报,2006,49(4):1155-1163. 被引量:94
  • 4Wright J,Yang A Y, Ganesh A, et al. Robust face recognition via spare representation[J]. IEEE Transactions on Pattern A- nalysis and Machine Intelligence ,2010,31 (2) :210-227.
  • 5Gao S H, Tsang L W H, Chia L T. Kernel sparse representation for image classification and face recognition [ C ]//Proc of llth European conference on computer vision. Heraklion, Greece : [ s. n. ] ,2010 : 1-14.
  • 6Zhang L, Yang M, Feng X C. Sparse representation or collabo- rative representation: which helps face recognition? [ C ]// Proc of IEEE international conference on computer vision. Barcelona : IEEE ,2011:471-478.
  • 7Aharon M, Elad M, Bruckstein A. K-SVD:an algorithm for de- signing overcomplete dictionaries for sparse representation [ J ]. IEEE Trans on Signal Processing, 2006,54 ( 11 ) :4311 - 4322.
  • 8Zhang Q,Li B X. Discriminative KSVD for dictionary learning in face recognition[ C ]//Proe of the IEEE conference on com- puter vision and pattern recognition. San Francisco, USA: IEEE ,2010 :2691-2698.
  • 9Frigui H, Krishnapuram R. Clustering by competitive agglom- eration[ J ]. Pattern Recognition, 1997,30 (7) : 1109-1119.
  • 10Mallar S G,Zhang Z. Matching pursuits with time-frequency dictionaries [ J ]. IEEE Transactions on Signal Processing, 1993,41 (12) :3397-3415.

引证文献4

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部