期刊文献+

基于软门限去噪的图象压缩编码研究 被引量:4

Noise Image Coding Using Soft-Threshold Based Denoising
下载PDF
导出
摘要 在详细地分析了 Donoho提出的子波域软门限去噪方法的基础上 ,给出了含噪图象信号噪声水平的估计及门限值随尺度变化的规律 .采用可分离的二维子波滤波器 ,方便地将 Donoho的软门限去噪方法应用于图象信号处理 ,从而对含噪图象 ,在去除噪声的同时 ,又最大限度地进行了压缩 .针对含噪的自然景物图象和合成孔径雷达图象的不同特点 ,分别提出了这两类图象的压缩方案 .对于 SAR图象的压缩编码 ,通过一个自然对数变换 ,使得乘性噪声转变为适于软门限去噪的加性噪声 .模拟结果显示 ,用软门限方法处理的解压缩图象比硬门限方法具有更好的视觉质量 ,因而该方法是解决含噪图象压缩编码的有效技术 . The soft threshold method proposed by Donoho is studied in this paper. The noise standard deviation of noise image and the thresholds of different scale are given. A separable 2 D wavelet filter is used so that the soft threshold denoising by Donoho is expediently applied to image processing, such as simultaneous denosing makes compression rate of a noisy image be large farthest. For noise image of nature scene and SAR, different image compression schemes are proposed respectively. Especially for SAR image, a natural logarithm transfors multiplicative noise to additive noise so that SAR image can be suppressed via the soft threshold denoising scheme. Experimental results show the decoded images by the soft threshold denoising have better quality than by the hard threshold denoising. It indicates that the improved ways in this paper are effective for noise image compression.
出处 《中国图象图形学报(A辑)》 CSCD 北大核心 2001年第1期46-50,共5页 Journal of Image and Graphics
基金 九五国家重点科技攻关项目 中国博士后基金
关键词 子波变换 图象压缩 噪声 软门限去噪 图象编码 Wavelet transform, Soft threshold, Image compression, Noise
  • 相关文献

参考文献8

  • 1Daubeehies I. Orthonormal bases of compactly supported wavelets. Comm. on Pure and Appl. Math. , 1988,11:674-693.
  • 2Antonini M, Barlaud M, Mathieu P et al Image coding using wavelet transform, IEEE Trans. on Image Processtng, 1992, 1(2):205-220.
  • 3Shapiro J M. Embedded image coding using zerotrees of wavelets coefficients. IEEE Trans. Signal Processing, 1993,41 : 3445-3462
  • 4Said A, Pearlman W A. A new last and efficient Image codec based on set partitioning in Hierarchical Trees, IEEE Trans. Circ. Syst. Video Tech. 1998,6(3):243-250.
  • 5Mallat S G, Hwang W L. Singularity detection and processing with wavelets. IEEE Trans, on Information Theory, 1992,38(2):617-643.
  • 6Lu J. Healy D M, Weaver J B. Contrast enhancement of medical images using multiscale edge representation. Optical Engineering.1994,33(7) : 2151-2161.
  • 7Donoho D L. De-noisiag via soft thrshoiding. IEEE Trans.Inform. Theory, 1995,41(3),613-627.
  • 8Guo H, Odegard J E, Lang M et al. Wavelet based speckle reduction with application to SAR based ATD/R. IEEE International Conference on Image Processing, 1994.1:74-79

同被引文献17

  • 1Thrasyvoulos N P. An adaptive clustering algorithm for image segmentation [J ]. IEEE Tran on Signal Processing, 1992, 40(4) :689-703.
  • 2Shyh-shiaw K, James D J. Spatial noise shaping based on human visual sensitivity and its application to image coding [J ]. IEEE Tram on Image Processing, 2002, 11(5):509-516.
  • 3Thrasyvoulos N P. An adaptive clustering algorithmfor image segmentation [J]. IEEE Tran on Signal Processing, 1992,40.
  • 4Shyh2shiaw K, James D J. Spatial noise shaping based on human visual sensitivity and its application to image coding[J]. IEEE Tran. on Image Pro2cessing, 2002,11.
  • 5堵国梁.LED显示屏控制系统的设计[M].东南大学,1998年.
  • 6孙洪.合成孔径雷达图像处理[M].北京:电子工业出版社,2005:134-147.
  • 7Eichel P, Ives R W. Compression of complex-valued SAR images[J]. IEEE Transactions Image Processing, 1999,8 (10): 1483 - 1487
  • 8孙明.高分辨率SAR数据压缩算法研究[D].北京:北京航空航天大学电子信息工程学院,2005
  • 9Said A, Pearlman W A. New, fast, and efficient image codec based on set partitioning in hierarchical trees [ J]. IEEE Trans Circuits Syst Video Techno, 1996,6(3 ):243 -250
  • 10Ives R W, Magotra N, Kiser C. Wavelet compression of complex SAR imagery using complex and real valued wavelets, a comparative study[ C ]//Conference Record of the Asilomar Conference on Signals, Systems & Computers. Los Alamitos, CA: IEEE Comp Soc, 1998,2 : 1294 - 1298

引证文献4

二级引证文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部