期刊文献+

线性粘弹结构有限元模型的鲁棒降阶方法 被引量:4

A ROBUST MODEL REDUCTION METHOD FOR THE FINITE ELEMENT MODEL OF LINEAR VISCOELASTIC STRUCTURES
下载PDF
导出
摘要 为了对粘弹性材料复合结构进行静动力分析及主被动控制 ,采用微振子模型描述线性粘弹材料的本构关系 ,先用有限元方法对结构进行离散 ,然后引入耗散自由度 ,将非线性的有限元方程转化为普通的二阶系统 ,最后从系统的可控性、可观性出发提出了一种模型的鲁棒降阶方法。算例表明微振子模型与有限元相结合 ,能很方便地求出固有频率、阻尼等模态参数及响应。鲁棒降阶算法稳定 ,能为下一步进行主动控制做好准备。 In order to perform the static or dynamic analysis and passive or active control for the viscoelastic composite structures, the Mini-Oscillator model is adopted to describe the constitutive relation of viscoelastic material. The finite element method (FEM) is employed to discrete the structure at first, and then the dissipated coordinates are introduced so as to transform the nonlinear FEM equations into ordinary second order system. Finally a robust model reduction method is proposed in view of the controllability and the observability of the system. The numerical example shows that it is very convenient to calculate the natural frequency, modal damping or other modal parameters and the response after the Mini-Oscillator model is combined with FEM. The model reduction method proposed is quite robust. The order reduced system is good enough for active control.
出处 《振动与冲击》 EI CSCD 北大核心 2001年第1期16-19,共4页 Journal of Vibration and Shock
基金 国防科技重点实验室基金资助项目! (JS 52 .4.3)
关键词 粘弹性材料 微振子模型 有限元方法 鲁棒降价 振动控制 线性粘弹结构 viscoelastic material,Mini_Oscillator model,finite element method,robust model reduction
  • 相关文献

参考文献2

  • 1石银明 上海交通大学.约束层结构的有限元分析.第七届全国振动理论及其应用学术会议议论[M].广东佛山:同济大学出版社,1999..
  • 2石银明,第七届全国振动理论及其应用学术会议论文集,1999年

同被引文献88

  • 1李军强,刘宏昭,王忠民.线性粘弹性本构方程及其动力学应用研究综述[J].振动与冲击,2005,24(2):116-121. 被引量:39
  • 2Lam M J, Inman D J, Saunders W R. Vibration control through passive constrained layer damping and active control. Journal of Intelligent Material Systems and Structures, 1997, 8(8): 663~677
  • 3Lam M J. Hybrid active/passive models with frequency dependent damping: [Dissertation]. Blacksburg: Virginia Polytechnic Institute and State University, 1997.1~8
  • 4Lee U, Kim J. Spectral element modeling for the beams treated with active constrained layer damping. International Journal of Solids and Structures, 2001, 38:5697~5702
  • 5Yellin J M, Shen I Y. A self-sensing active constrained layer damping treatment for a Euler - Bernoulli beam. Smart Materials and Structures, 1996, 5:628~637
  • 6Plump J, Hubbard J E. Modeling of active constrained layer damper. In: Proceedings of the 12th International Congress on Acoustics, Toronto, 1986. 24~31
  • 7Agnes G, Napolitano K. Active constrained layer viscoelastic Damping. AIAA Journal, 1993:3499~3506
  • 8Baz A, Ro J. Partial treatment of flexible beams with active constrained layer damping. Vibration and Control in Structural Systems, 1993, 167:61~80
  • 9Benjeddou A. Advances in hybrid active-passive vibration and noise control via piezoelectric and viscoelastic constrained layer treatments. Journal of Vibration and Control, 2001, 7:565~602
  • 10Baz A. Spectral finite-element modeling of the longitudinal wave propagation in rods treated with active constrained layer damping. Smart Materials and Structures, 2000, 9:372~377

引证文献4

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部