期刊文献+

同时同频全双工场景中的射频域自适应干扰抵消 被引量:19

Adaptive Self-interference Cancellation at RF Domain in Co-frequency Co-time Full Duplex Systems
下载PDF
导出
摘要 考虑同时同频全双工无线收发信机的射频域自干扰抵消技术,现有研究多集中于利用手动方式调整自干扰估计信号的参数。针对这一问题,该文提出一种射频域的自适应干扰抵消算法。以正交、同相参考支路构成的自干扰估计结构为基础,利用梯度下降法搜索支路的最优权矢量,估计出自干扰信号,实现了射频域的自适应干扰抵消,并且给出了该算法的收敛性分析。分析与仿真表明,当迭代步长越大或统计时间越短时,算法的收敛速度越小。在100倍符号周期的统计时间,0.3的归一化步长,80 dB干信比以及0 dB信噪比的仿真条件下,该文提出的射频域自适应干扰抵消算法可以实现约100 dB的自干扰抑制。 In the context of the RF domain self-interference cancellation algorithms in the co-frequency and co-time full duplex system, the current research focuses mainly on the manually adjusting of self-interference parameters. To solve this problem, a RF domain adaptive self-interference cancellation is proposed. On the basis of the self-interference estimation construction within an in-phase and quadrature reference signal channels, the self-interference is reconstructed by searching the optimal weight vector with the method of gradient descending and cancelled at last. In addition, the convergence of the proposed algorithm is analyzed. The analysis and simulation show that the convergent speed is faster when the iterative step size is larger and the statistical time is shorter. The self-interference can decrease almost 100 dB adopting the RF domain adaptive self-interference cancellation algorithm proposed in this paper, when the statistical time is 100 symbol periods, the normalized iterative step is 0.3, the signal to noise ratio is 0 dB, and the interference to signal ratio is 80 dB.
出处 《电子与信息学报》 EI CSCD 北大核心 2014年第6期1435-1440,共6页 Journal of Electronics & Information Technology
基金 国家自然科学基金(U1035002/L05 61001087 61101034 61271164) 国家科技重大专项(2011ZX03003010-003 2014ZX03003001-002) 四川省教育厅重点项目(12ZA161)资助课题
关键词 无线通信 同时同频全双工 射频域干扰抵消 收敛性 Wireless communication Co-frequency and Co-time Full Duplex (CCFD) RF self-interferencecancellation Convergence
  • 相关文献

参考文献16

  • 1Rappaport T S, Shu S, Mayzus R, et al. Millimeter wavemobile communications for 5G cellular: it will work![J]. IEEEAccess, 2013,1: 335-349.
  • 2Cadambe V R and Jafar S A. Degrees of freedom of wirelessnetworks with relays, feedback, cooperation, and full duplexoperation [J]. IEEE Transactions on Information Theory,2009,55(5): 2334-2344.
  • 3Elsayed A, Eltawil A M, and Sabharwal A. Rate gain regionand design tradeoffs for full-Duplex wireless communications[J]. IEEE Transactions on Wireless Communications, 2013,12(7): 3556-3565.
  • 4Lbpez-Valcarce R, Antonio-Rodriguez E, Mosquera C, et al.An adaptive feedback canceller for full-duplex relays based onspectrum shaping[J]. IEEE Journal on Selected Areas inCommunications, 2012, 30(8): 1566-1577.
  • 5张志亮,罗龙,邵士海,潘文生,沈莹,唐友喜.ADC量化对同频全双工数字自干扰消除的误码率性能分析[J].电子与信息学报,2013,35(6):1331-1337. 被引量:14
  • 6Oppenheim A and Schafer R. Discrete Time SignalProcessing[M]. 3rd Ec}.,New Jersey; Prentice Hall Inc, 2009:183-197.
  • 7Choi J I, Jain M, Srinivasan K, et q.1. Achieving singlechannel, full duplex wireless communication[C]. MobiCom,10,New York, USA, 2010: 1-12.
  • 8Radutiovic B, Gynawardena D, Key P, et al. Rethinkingindoor wireless mesh design: low power, low frequency,full-duplex[C]. WIMESH, Boston, Massachusetts, 2010: 1-6.
  • 9Jain M, Choi J, Kim T M, et al.. Practical, real-time, fullduplex wireless[C]. Mobile Computing and Networking, NewYork, USA, 2011: 301-312.
  • 10Hong S, Mehlman J, and Katti S. Picasso: flexible RF andspectrum slicing[C]. SIGCOMM,12,Helsinki, Finland, 2012:13-17.

二级参考文献18

  • 1Sahai A, Patel G, and Sabharwal A. Pushing the limits of full-duplex: design and real-time implementation[R]. The Computing Research Repository (CoRR), 2011.
  • 2L6pez-Valcarce R, Antonio-Rodrfguez E, Mosquera C, et al.. An adaptive feedback canceller for full-duplex relays based on spectrum shaping[J]. IEEE Journal on Selected Areas in Communications, 2012, 30(8): 1566-1577.
  • 3Choi J I, Jain M, Srinivasan K, et al.. Achieving single channel, full duplex wireless communication[C]. Proceedings of the 16th Annual International Conference on Mobile Computing and Networking (MobiCom'10), New York, 2010: 1-12.
  • 4Khojastepour M A, Sundaresan K, Rangarajan S, et al.. The case for antenna cancellation for scalable full-duplex wirelesscommunications[C]. 10th ACM Workshop on Hot Topics in Networks (HOTNETS'11), Massachusetts, USA, 2011: 17.
  • 5Jain M, Choi J I, Kim T M, et al.. Practical, real-time, full duplex wireless[C]. Proceedings of the 17th Annual International Conference on Mobile Computing and Networking (MobiCom'll), New York, 2011: 301-312.
  • 6Hong S, Mehlman J, and Katti S. Picasso: flexible RF and spectrum slicing[C]. ACM SIGCOMM Conference, Helsinki, Finland, 2012: 37-48.
  • 7Knox M E. Single antenna full duplex communications using a common carrier[C]. 2012 IEEE 13th Annual Wireless and Microwave Technology Conference (WAMICON), Florida, 2012: 1-6,.
  • 8Gollakota S and Katabi D. ZigZag decoding: combating hidden terminals in wireless networks[C]. Proceedings of the ACM SIGCOMM 2008 Conference on Data Communication,New York, 2008: 159-170.
  • 9Halperin D, Anderson T, and Wetherall D. Taking the sting out of carrier sense: interference cancellation for wireless LANs[C]. Proceedings of the 14th ACM International Conference on Mobile Computing and Networking (MobiCom'08), New York, 2008: 339-350.
  • 10Katti S, Gollakota S, and Katabi D. Embracing wireless interference: analog network coding[C]. Proceedings of the 2007 Conference on Applications, Technologies, Architectures and Protocols for Computer Communications (SIGCOMM'07), New York, 2007: 397-408.

共引文献13

同被引文献121

引证文献19

二级引证文献56

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部