期刊文献+

信号场强压缩感知的传感器定位方法研究 被引量:7

Research on sensor localization method based on compressive sensing of signal strength
下载PDF
导出
摘要 提出了多包接收时的信号场强叠加模型,建立了观测场强与传感器位置的映射关系。由于传感器数量相对于网格数量是稀疏的,将传感器定位转化为压缩感知问题求解,以减少观测的信号数量,并提出了NL1-norm算法计算出传感器的位置。通过数值仿真,分析了传感器信号功率、观测信号数量以及传感器个数对定位误差的影响。相同条件下,验证了NL1-norm算法的定位精度相比最小化L1-norm算法和贪婪匹配追踪(GMP)算法提高了2倍。低信噪比情况下比较得出,基于CS的节点定位方法误差和观测代价都明显小于RSSI和MDS-MAP方法。 This paper proposes the superposition model of signal strength when MPR (multi-packet reception) is used in WSN, and es- tablishes the mapping relation between the observed signal strength and sensor location. Because of the sparsity of the number of the sensors relative to the number of the grids, the issue of sensor localization can be transformed into a compressive sensing issue, therefore the number of the measured signals is reduced. The NL1-norm algorithm is proposed to calculate the sensor position. With numerical simulation, the influence of the sensor signal power, the number of the measured signals and the number of the sensors on localization error is analyzed. It is verified that the localization accuracy of the NL1-norm algorithm is two times better than those of the minimized Ll-norm and greedy match pursuit (GMP) algorithms. Comparison under the low SNR circumstance shows that the localization method based on CS has less location error and measurement cost than RSSI and MDS-MAP methods.
出处 《仪器仪表学报》 EI CAS CSCD 北大核心 2014年第6期1201-1208,共8页 Chinese Journal of Scientific Instrument
基金 国家自然科学基金(61370088) 国家国际科技合作专项项目(20140FB10060)资助
关键词 信号场强叠加 压缩感知 感知矩阵 NL1-norm算法 signal strength superposition compressive sensing sensing matrix NL1-norm algorithm
  • 相关文献

参考文献17

  • 1YUNSEOP K,EVANS R G, IVERSEN W M. Remotesensing and control of an irrigation system using a distrib-uted wireless sensor network[J]. IEEE Transactions onInstrumentation and Measurement,2008,57 ( 7 ):1379-1387.
  • 2ZHOU G, HE T,KRISHNAMURTHY S,et al. Modelsand solutions for radio irregularity in wireless sensor net-works [J]. IEEE Transactions on Sensor Networks,2006,2(2) :221-262.
  • 3KO N Y,KIM T G. Comparision of Kalman filter andparticle filter used for localization of an underwater we-hicle[G]. IEEE International Conference on Ubiqui-tous Robots and Ambient Intelligence ( URAI) . Kore-a, 2012.
  • 4BAHL P,VENKATA N P. RADAR: An in-building RF-based user location and tracking system [C]. IEEE Inter-national Conference on Computer Communication (INFO-COM) ,Israel, 2000.
  • 5SOUVIK S,ROY C R,SRIHARI N. Successive inter-ference cancellation : Carving out mac layer opportuni-ties [J] . IEEE Transactions on Mobile Computing,2013,12(2) :346-357.
  • 6LUO C,WU F, SUN J,et al. Efficient measurement gen-eration and pervasive sparsity for compressive data gather-ing[J]. IEEE Transactions on Wireless Communication,2010,9(12) :3728-3738.
  • 7邹志强,王悦,沙超,胡存琛,张飞.无线传感器水下监测网络稀疏采样和近似重构[J].仪器仪表学报,2012,33(12):2728-2734. 被引量:11
  • 8周傲英,杨彬,金澈清,马强.基于位置的服务:架构与进展[J].计算机学报,2011,34(7):1155-1171. 被引量:171
  • 9SHRIVASTAVA N, MUDUMBAI R,MADHOW U,etal. Target tracking with binary proximity sensors [J].ACM Transactions on Sensor Networks, 2009,5(4):1-33.
  • 10李慧,罗海勇,徐俊俊,陈晓峰.一种基于奇异值分解的射频指纹排序定位算法[J].仪器仪表学报,2013,34(10):2219-2225. 被引量:4

二级参考文献140

  • 1潘晓,肖珍,孟小峰.位置隐私研究综述[J].计算机科学与探索,2007,1(3):268-281. 被引量:65
  • 2Yang B, Lu H, Jensen C S. Scalable continuous range monitoring of moving objects in symbolic indoor space//Proeeedings of the 18th ACM Conference on Information and Knowledge Management. Hong Kong, China, 2009:671-680.
  • 3Wolfson O, Sistla P A, Chamberlain S, Yesha Y. Updating and querying databases that track mobile units. Distributed and Parallel Databases, 1999, 7(3): 257-387.
  • 4Pfoser D, Jensen C S. Capturing the uncertainty of movingobjects representations//Proceedings of the 6th International Symposium on Advances in Spatial Databases. Hong Kong, China, 1999:111-132.
  • 5Cheng R: Kalashnikov D V, Prabhakar S. Querying imprecise data in moving object environments. IEEE Transactions on Knowledge and Data Engineering, 2004, 16(9): 1112- 1127.
  • 6Zhang M, Chen S, Jensen C S, Ooi B C, Zhang Z. Effectively indexing uncertain moving objects for predictive queries// Proceedings of the VLDB Endowment. Lyon, 2009, 2 (1): 1198-1209.
  • 7Cheng R, Chen L, Chen J, Xie X. Evaluating probability threshold k-nearest-neighbor queries over uncertain data// Proceedings of the 12th International Con/erence on Extending Database Technology. Saint Petersburg, 2009 :672-683.
  • 8Tao Y, Cheng R, Xiao X, Ngai W K, Kao B, Prabhakar S. Indexing multi-dimensional uncertain data with arbitrary probability density funetions//Proceedings of the 31st International Conference on Very Large Data Bases. Trondheim, 2005 : 922-933.
  • 9Kalashnikov D V, Ma Y, Mehrotra S, Hariharan R. Index for fast retrieval of uncertain spatial point data//Proceedings of the 14th ACM International Symposium on Geographic Information Systems. Arlington, 2006:195-202.
  • 10Chen J, Cheng R. Efficient evaluation of imprecise location- dependent queries//Proceedings of the 23rd International Conference on Data Engineering. Istanbul, 2007:586-595.

共引文献206

同被引文献52

  • 1CHENG L, WU C D, ZHANG Y Z wireless sensor networks[J]. IEEE tronics, 2011,57(3): 1099-1104.
  • 2Indoor robot localization based on Transactions on Consumer Elec- L1U H B, YANG J, SIDHOM S, et al. Accurate WiFi based localiza- tion for smartphones using peer assistance[J]. IEEE Transactions on Mobile Computing, 2014,13(10): 2199-2214.
  • 3AHMAD El A, SLIM Z, SOFIENE A, et al. Low-cost localization for multi-hop heterogeneous v,,ireless sensor networks[J]. IEEE Transac- tions on Signal Process, 2015, 13(7): 1199-1212.
  • 4VOLKAN C, PETRO B, RICHARD G. Near-optimal bayesian local- ization via incoherence and sparsity[C]//lnternational Conference of the IEEE Information Processing in Sensor Networks. San Francisco, c2009:205-216.
  • 5ZHANG B W, CHENG X Z, ZHANG N, et al. Sparse target counting and localization in sensor networks based on compressive sens- ing[C]//International Conference of the IEEE Computer Communica- tion (INFOCOM). Shanghai, China, c2011:2255-2263.
  • 6X1AO F, SHA C H, CHEN L, et al. Noise-tolerant localization from incomplete range measurements for wireless sensor networks[C]//In- ternational Conference of the IEEE Computer Communication (IN- FOCOM). Hong Kong, China, c2015:2794-2802.
  • 7GIORGIO Q, RICCARDO M, GIANLUIGI P, et al. Sensing, com- pression and recovery for wsns: sparse signal modeling and monitor- ing framework[J]. IEEE Transactions on Wireless Communications, 2012, I1(10): 3447-3461.
  • 8XIAO J, LUO Z, G1ANNAKIS G B. Performance bounds for the rate-constrained universal decentralized estimators[J]. IEEE Signal Process Letters, 2007,14( 1 ): 47-50.
  • 9RIBE1RO A, GIANNAKIS G B. Bandwidth-constrained distributed estimation for wireless sensor networks - part i: Gaussian case[J]. IEEE Transactions on Signal Process, 2006, 54(3): 1 131-1143.
  • 10WANG X H, QIU J, FAN J, et al. MDS-based localization scheme tbr large-scale WSNs within sparse anchor nodes[C]//lnternational Con- lrence on Communications (ICC). London, UK, c2015: 6609-6614.

引证文献7

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部