期刊文献+

基于统计量模式分析的MKPLS间歇过程监控与质量预报 被引量:12

Batch process monitoring and quality prediction based on statistics pattern analysis and MKPLS
下载PDF
导出
摘要 传统MKPLS是对数据矩阵的协方差矩阵进行分解,没有利用数据的高阶统计量等有用信息,在进行特征提取时会造成数据有用信息的丢失,导致故障识别效果差。为了解决此问题,提出了统计量模式分析(SPA)与多向核偏最小二乘(MKPLS)相结合的多向统计量模式分析的核偏最小二乘方法(MSPAKPLS)。该方法首先引入滑动窗技术构造样本的不同阶次统计量,将数据从原始的数据空间映射到统计量样本空间,然后利用核函数将统计量样本空间映射到高维核空间进行偏最小二乘分析,并对产品质量进行预测。最后将该方法应用到工业青霉素发酵过程中,并与传统方法进行比较,发现该方法具有更好的监控性能和预测性能。 Traditional MKPLS method conducts the covariance matrix decomposition of the data matrix, and some useful high-order statistics are not used, which will cause the loss of the useful data information in the feature extraction process and lead to poor fault recognition performance. Aiming at this issue, a multi-way statistics pattern analysis kernel partial least squares method (MSPAKPLS) is proposed, which combines the statistics pattern analysis (SPA) with multi-way kernel partial least squares (MKPLS). This method first introduces a slide window technique to construct different order statistics of the data sample; the data are mapped from the original data space into the statistic sample space, then the kernel function is used to map the data from the statistic sample space into the high dimensional kernel space, and the PLS analysis and product quality prediction are conducted. At last, this method was applied in the industrial penicillin fermentation process and compared with some conventional methods; the results show that the proposed method has better monitoring and prediction performance.
出处 《仪器仪表学报》 EI CAS CSCD 北大核心 2014年第6期1409-1416,共8页 Chinese Journal of Scientific Instrument
基金 国家自然科学基金(61174109 61364009) 高等学校博士学科点专项科研基金(20101103110009)资助项目
关键词 过程监控 多向核偏最小二乘(MKPLS) 多向统计量模式分析的核偏最小二乘(MSPAKPLS) 间歇过程 process monitoring multi-way kernel partial least squares (MKPLS) multi-way statistics pattern analysis kernel partial least squares(MSPAKPLS) batch process
  • 相关文献

参考文献24

  • 1ROOP R, SHI Z Q. Application of principal componentanalysis (PCA) to evaluating the deformation behaviors ofpharmaceutical powders [J]. Journal of PharmaceuticalInnovation, 2013,8(2) : 121-130.
  • 2VENTURA G,GREGORY J, ROBERT K,et al. Analy-sis of petroleum compositional similarity using multiwayprincipal components analysis ( MPCA) with comprehen-sive two-dimensional gas chromatorgraphic data [J].Journal Chromatography A,2011, 1218 ( 18 ):2854-2592.
  • 3MONROY I,VILLEZ K,GRAELLS M, et al. Dynamicprocess monitoring and fault detection in a batch fermen-tation process : Comparative performance assessment be-tween MPCA and BDPCA [J]. Computer Aided Chemi-cal Engineering, 2011,29(1) : 1371-1375.
  • 4谭帅,王福利,彭俊.基于历史过渡特性的新过渡模态建模方法[J].仪器仪表学报,2012,33(7):1533-1540. 被引量:4
  • 5WU J, LUO W,WNAG XUE K. A new application ofWT-ANN method to control the preparation process ofmet form in hydrochloride tablets by near in frared Qc-troscopy compared to PLS [J]. Pharmceutical and Bio-medical Analysis, 2013,80( 1 ) : 186-191.
  • 6GEERT G, JEF V,JAN F. Discriminating between criti-cal and noncritical disturbances in ( bio) chemical bachprocesses using multi-model fault detection and end-qual-ity prediction[J]. Industrial and Engineering ChemistryResearch,2012,51(1) : 12375-1238.
  • 7NAES T,TOMIC 0. Multi-block regression based oncombination so for thogonalisation, PLS regressionandcanonical correlation analysis [J]. Chemometrics andIntelligent Laboratory Systems, 2013,124 :32-42.
  • 8CHOI S W , LEE I B. Mutilblock PLS based localizedprocess diagnosis [J]. Journal of Process Control,2005,15,3(1) :295-306.
  • 9石怀涛,刘建昌,张羽,李龙.基于相对变换PLS的故障检测方法[J].仪器仪表学报,2012,33(4):816-822. 被引量:23
  • 10ZHANG Y W, HU Z Y. Multivariate process monitoringand analysis based on multi-scale KPLS [J]. ChemicalEngineering Research and Design, 2011,89 ( 12 ):2667-2678.

二级参考文献51

共引文献41

同被引文献101

  • 1范茂兴,潘丰,盛炳乾,孙星海.氨基酸发酵微机控制系统[J].无锡轻工业学院学报,1994,13(1):57-66. 被引量:4
  • 2刘世成,王海清,李平.基于多向核主元分析的青霉素生产过程在线监测[J].浙江大学学报(工学版),2007,41(2):202-207. 被引量:9
  • 3王开军,张军英,李丹,张新娜,郭涛.自适应仿射传播聚类[J].自动化学报,2007,33(12):1242-1246. 被引量:145
  • 4Mori J C, Yu J. Quality relevant nonlinear batch process performance monitoring using a kernel based multiway non-Gaussian latent subspace projection approach [J]. Journal of Process Control, 2014, 24(1): 57-71.
  • 5Xiong H S, Gong X C, Qu H B. Monitoring batch to batch reproducibility of liquid-liquid extraction process using in-line near-infrared spectroscopy combined with multivariate analysis [J]. Journal of Pharmaceutical and Biomedical Analysis, 2012, 70(11): 178-187.
  • 6Stubbs S, Zhang J, Morris J L. Multiway interval partial least squares for batch process performance monitoring [J]. Industrial and Engineering Chemistry Research, 2014, 52 (35) : 12399-12407.
  • 7Geert C Jef V, Jan F. Discriminating between critical and noncritical disturbances in (bio)chemical bach processes using multi-model fault detection and end-quality prediction [J]. Industrial and Engineering Chemistry Research, 2012, 51(1): 12375-1238.
  • 8Naes T, Tomic O. Multi-block regression based on combination so for thogonalisatiort, PLS regressionand canonical correlation analysis [J]. Chemometrics and lntelligent Laboratory Systems, 2013, 124:32-42.
  • 9Li C Alcala C F, Qin S J, et al. Output relevant fault reconstruction and fault subspace extraction in total projection to latent structures models [J]. Industrial and Engineering Chemistry Research, 2010, 49(19):9175- 9183.
  • 10Zhou D, Li G Qin S J. Total projection to latent structures for process monitoring [J]. American Institute of Chemical Engineers, 2010, 56(1): 168-178.

引证文献12

二级引证文献58

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部