期刊文献+

基于改进QPSO的模糊C-均值聚类算法 被引量:3

Fuzzy C-means clustering algorithm based on improved QPSO
下载PDF
导出
摘要 针对模糊C-均值聚类算法容易陷入局部极值等缺陷,提出了基于改进QPSO的模糊C-均值聚类,算法利用QPSO的优点,并对量子门更新策略进行了改进。实验结果显示该算法提高了模糊聚类算法的聚类效果以及搜索能力,在全局寻优能力、跳出局部最优能力、收敛速度等方面具有优势。 Since the fuzzy C-means clustering algorithm is easy to fall into local extremum,fuzzy C-means clustering algo-rithm based on the improved quantum particle swarm optimization (QPSO) is proposed. The local search ability and quantum gates update strategy were improved by making full use of the advantages of fast convergence of QPSO. The experimental results show that the algorithm improves the search ability and clustering effect of fuzzy clustering algorithm,and has superiority in the aspects of global optimization capability,jumping out of local optimum capacity and convergence rate.
出处 《现代电子技术》 2014年第7期118-120,共3页 Modern Electronics Technique
基金 河南省科技计划重点项目资助(102102210416)
关键词 模糊C-均值聚类 量子粒子群优化 聚类分析 量子门更新策略 fuzzy C-means clustering quantum particle swarm optimization clustering analysis quantum gates update strategy
  • 相关文献

参考文献12

二级参考文献96

共引文献151

同被引文献22

  • 1杨悦,郭树旭,任瑞治,于永力.基于核函数及空间邻域信息的FCM图像分割新算法[J].吉林大学学报(工学版),2011,41(S2):283-287. 被引量:10
  • 2王学民.主成分分析和因子分析应用中值得注意的问题[J].统计与决策,2007,23(11):142-143. 被引量:15
  • 3KARANTZALOS K,ARGIALAS D. Improving edge detectionand watershed segmentation with anisotropic diffusion and mor.phological levellings [J]. International journal of remotesensing,2006,27(24):5427-5434.
  • 4ARAKERI M P,REDDY G R M. Efficient fuzzy clusteringbased approach to brain tumor segmentation on MR images[C].Proceedings of 2011 First International Conference onComputational Intelligence and Information Technology. Pune:Springer Berlin Heidelberg,2011:790-795.
  • 5LI C M,XU C Y,GUI C F,et al. Distance regularized levelset evolution and its application to image segmentation [J].IEEE transactions on image processing,2010,19(12):3243-3254.
  • 6RAKESH M,RAVI T. Image segmentation and detection of tu.mor objects in MR brain images using FUZZY C . MEANS(FCM) algorithm [J]. International journal of engineering re.search and applications,2012,2(3):2088-2094.
  • 7RASTGARPOUR M, SHANBEHZADEH J. A new kernel .based fuzzy level set method for automated segmentation ofmedical images in the presence of intensity in homogeneity [J].Computational and mathematical methods in medicine,2014(1):231-239.
  • 8BEZDEK J C. A convergence theorem for the fuzzy ISODATAclustering algorithms [J]. IEEE transactions on pattern analysisand machine intelligence,1980,2(1):1-8.
  • 9EL.MELEGY M T,MOKHTAR H M. Tumor segmentation inbrain MRI using a fuzzy approach with class center priors [J].EURASIP journal on image and video processing,2014(1):1-14.
  • 10杨燕,靳蕃,KAMEL Mohamed.聚类有效性评价综述[J].计算机应用研究,2008,25(6):1630-1632. 被引量:117

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部