期刊文献+

水声信号的调制方式识别 被引量:5

Recognition of underwater acoustic signal modulation
下载PDF
导出
摘要 研究了不同水声信道环境下不同调制方式的水声信号识别算法。该算法利用双谱计算信号的双谱矩阵,并对双谱矩阵进行特征值特征向量分解,将分解得到的最大特征值对应的特征向量作为特征量。文中选取不同水声信道传输的样本信号计算其特征量,将待识别信号的特征量与样本信号的特征量做内积运算,将最大内积值对应的调制方式作为待识别信号的调制方式。实验仿真结果表明,该算法较好地实现了不同信道环境下的水声信号分类识别,在高信噪比条件下能达到90%以上的识别率。 In this paper, the recognition algorithm of different modulation signals from different underwater acoustic channels is studied. The bispectrum matrix of underwater signal is computed by indirect bispectrum algorithm, and it is decomposed to extract the eigenvalue and eigenvector.The eigenvector of the maximum eigenvalue is selected as the characteristic vector.The characteristic vector of the sample signals selected from different underwater acoustic channels is extracted to make inner product operation with the characteristic vector of the signals to be identified. The maximum inner product value corresponds to one modulation, which is the modulation scheme of the signal to be identified. The experiment shows that the algorithm can realize the classification and recognition of underwater signals from different channels, and identify more than 90% of the signals in the condition of high SNR.
出处 《燕山大学学报》 CAS 2014年第2期156-162,共7页 Journal of Yanshan University
基金 中国人民解放军总参谋部预研课题
关键词 水声信号 双谱 特征提取 分类识别 underwater acoustic signal bispectrum characteristic extraction classification and identification
  • 相关文献

参考文献9

二级参考文献15

  • 1张贤达.现代信号处理[M].清华大学出版社,1998.436-437.
  • 2胡广书.数字信号处理-理论、算法与实现[M].北京:清华大学出版社,2000.126-127.
  • 3BOASHASH B. A methodology for detection and classification of some underwater acoustic signals using time frequency analysis techniques[ J ]. IEEE Trans ASSP, 1990,38(11) :1829 - 1841.
  • 4BROCKETT P L, HINICH M ,WILSON G R. Nonlinear and non-gaussian ocean noise [J]. JASA,1987,82(4) : 16 -21.
  • 5NIKIAS C, MENDEL J. Signal processing with higher-order statistics[ J ]. IEEE Trans Signal Processing, 1993, 41:10-38.
  • 6FU Limin. Rule generation from neural networks[ J ]. IEEE Transaction on System, Man, and Cybernetics, 1994,24(8) :1114 - 1124.
  • 7Yang Y, Soliman S S. Statistical moments based classifier for MPSK signal. Proc. GLOBECOM'91, Phoenix, December 1991,vol. 1: 72 - 76.
  • 8Antti-Veikko Rosti. Statistic methods in modulation classification.[Master of Science Thesis], Tampere University of Technology Department of Information Technology, 1998:39 - 46.
  • 9Liang Hong, Ho K C. Identification of digital modulation types using the wavelet transform. Proc. IEEE Military Commun. Conf.MILCOM'99, New Jersey, October 1999:427 - 431.
  • 10Mobasseri B G. Constellation shape as a robust signature for digital modulation recognition. Proc. IEEE Military Commun.Conf. MILCOM'99, New Jersey, October 1999:442 - 446.

共引文献71

同被引文献45

引证文献5

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部