摘要
A comprehensive investigation into the occur-rence of odor problem at 111 drinking water treatment plants (DWTPs) in major cities across China was undertaken using both flavor profile analysis (FPA) and gas chromatography-mass spectrometry (GC-MS). Eighty percent of source water samples exhibited odor problems, characterized by earthy/musty (41%) and swampy/septic (36%) odors, while the occurrence rate was lower (45%) in the finished water. Source water from rivers exhibited more pollution-origin odors, such as the swampy/septic odor, while that from lakes and reservoirs exhibited more algae- origin odors, such as earthy/musty odors. The occurrence rate of 2-methylisoborneol (2-MIB) in the surface source water samples was 75%, with 7% of samples containing 2- MIB concentrations of over 10 ng.L-1. The earthy/musty odor in the lake/reservoir water samples was mainly caused by 2-MIB (linear regression coefficient, R2= 0.69), while the correlation between 2-MIB concentration and the earthy/musty odor intensity samples was weak (R2= 0.35) in the river-source water These results will be useful for the management of odor-quality problems in drinking water of China.
A comprehensive investigation into the occur-rence of odor problem at 111 drinking water treatment plants (DWTPs) in major cities across China was undertaken using both flavor profile analysis (FPA) and gas chromatography-mass spectrometry (GC-MS). Eighty percent of source water samples exhibited odor problems, characterized by earthy/musty (41%) and swampy/septic (36%) odors, while the occurrence rate was lower (45%) in the finished water. Source water from rivers exhibited more pollution-origin odors, such as the swampy/septic odor, while that from lakes and reservoirs exhibited more algae- origin odors, such as earthy/musty odors. The occurrence rate of 2-methylisoborneol (2-MIB) in the surface source water samples was 75%, with 7% of samples containing 2- MIB concentrations of over 10 ng.L-1. The earthy/musty odor in the lake/reservoir water samples was mainly caused by 2-MIB (linear regression coefficient, R2= 0.69), while the correlation between 2-MIB concentration and the earthy/musty odor intensity samples was weak (R2= 0.35) in the river-source water These results will be useful for the management of odor-quality problems in drinking water of China.
基金
This work was financially supported by the National Natural Science Foundation of China (Grant No. 50938007), the Funds for Major Science and Technology Program for Water Pollution Control and Treatment (No. 2009ZX07419-001) and the Key Scientific and Technological Projects of Science and Technology Commission of Shanghai Municipality (No. 12231201600). The authors would like to express their gratitude toward members from the water treatment plants for their assistance during sampling.