期刊文献+

大口径空间反射镜Cartwheel型柔性支撑设计 被引量:21

Design of Cartwheel Flexural Support for a Large Aperture Space Mirror
原文传递
导出
摘要 针对同轴三反式空间光学遥感器对大口径主反射镜组件的高刚度、高强度、高热稳定性等特殊要求,提出一种基于Cartwheel型双轴柔铰的三点柔性支撑结构。首先利用无量纲方法研究了单个柔性支撑的柔度特性,然后利用有限元方法对反射镜组件的静力学、动力学与热特性进行灵敏度分析,确定了支撑结构中柔性环节的几何尺寸参数,并进行了有限元数值仿真。最后,利用面形值为λ/40均方根(RMS)的非球面镜进行了反射镜组件面形检测实验并利用等效球面镜组件进行了动力学实验。仿真与实验结果表明:当柔性环节尺寸为:壁厚t=8mm,直梁高度h=4mm,直梁长度L=8mm时,在正交三向自重与15℃稳态温升作用下,反射镜面形精度RMS小于12nm;反射镜组件一阶固有频率实验值为296Hz,与仿真结果相差6%,能够满足使用要求。 The large aperture primary mirror assembly (PMA) mounted in space remote sensor should have the extraordinary virtues as high stiffness, high strength, high thermal stability etc.. A novel three-point flexural support configuration based on Cartwheel flexural hinge for large aperture PMA is presented in this paper. Firstly, the stiffness characteristic of the support structure is approached using the dimensionless design method. Then, static and dynamic analysis based on finite element method are performed on the PMA to find the optimal dimension parameters of the support flexure. Finally, optical test on a mirror with ,λ/40 root mean square (RMS) surface figure and vibration experiment on an equivalently spherical mirror are performed to validate the design configuration. The simulation and experiment results indicate that when the thickness of flexure t = 8 mm, beam height h = 4 ram, beam length L =8 mm, the surface figure of PMA can keep below RMS 12 nm under the load of 1 G gravity and 15 ℃ temperature change. The first natural frequency reaches 296 Hz, only deviating 6% from the analysis result. The Cartwheel flexure support can satisfy the extraordinary design requirements.
出处 《光学学报》 EI CAS CSCD 北大核心 2014年第6期210-218,共9页 Acta Optica Sinica
基金 国家863计划(2007AA12J123)
关键词 光学器件 反射镜支撑 Cartwheel铰链 无量纲方法 有限元方法 动力学实验 optical devices mirror support Cartwheel hinge dimensionless method finite element method dynamic test
  • 相关文献

参考文献13

二级参考文献63

  • 1张德江,刘立人,徐荣伟,李大汕.透镜自重变形引起波像差的有限元分析[J].光学学报,2005,25(4):538-541. 被引量:24
  • 2Yoder Jr P. Opto-mechanical Systems Design [M]. New York: Marcel Dekker Inc, 1992: 95-165.
  • 3Vukobratovich D. Introduction to Optomechanical Design [M]. New York: SPIE Short Course SC014, 2003: 105-181.
  • 4BARMES Jr W P. Hexagonal vs. triangular core lightweight mirror structure [J]. Applied Optics(S0003-6935), 1972, 11(12): 2748-2751.
  • 5愈云书.结构模态试验分析[M].北京:宇航出版社,2000:50-80.
  • 6Drband B, Seitz G.. Interferometric testing of optical surfaces at its current limit[J].Optik, 2001, 112(9): 392-398.
  • 7Leslie L. D.. Environmentally friendly interferometry[C]. SPIE, 2004, 5532: 159-169.
  • 8Leslie L. D.Suppressing vibration errors in phase-shifting interferometry[C]. SPIE, 2007, 6704: 670402.
  • 9吴新民. 光干涉测试中的抗振技术研究[D]. 南京: 南京理工大学, 2001. 15-29.
  • 10Wolf E.. Progress in Optics[M]. New York: American Elsevier Publishing Company, 1976. 158-159.

共引文献101

同被引文献176

引证文献21

二级引证文献132

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部