期刊文献+

水泥中MgO含量的激光诱导击穿光谱测量方法研究 被引量:5

Research on the Measurement Method of MgO Content in Cement by Laser Induced Breakdown Spectroscopy
原文传递
导出
摘要 氧化镁是水泥中要求准确测定的主要物质之一。利用激光诱导击穿光谱(LIBS)技术对普通硅酸盐水泥样品进行了等离子体光谱分析。选择Mg I 517.2nm特征谱线作为分析线,测量了不同激光能量下的光谱信号强度以及对应的信噪比,确定了最佳激光能量为40mJ。为减小实验误差,将Mg 517.2nm的光谱强度和516~520nm的光谱强度积分之比作为内标,建立了MgO质量分数测定的定标曲线,定标曲线的线性系数达到了0.9959。采用循环反演的方法检测了MgO定量分析的测量精度,最大相对偏差和平均相对偏差分别为5.9%和2.48%,LIBS对水泥样品中的MgO质量分数的检测限达到了0.51%。 MgO is one of the main substances which are required to be accurately determinated in cement. The plasma spectra of ordinary silicate cement obtained by laser-induced breakdown spectroscopy (LIBS) are analyzed. Mg I 517.2 nm characteristic line is selected as the analysis line. By measuring the spectral intensities of the signals and the corresponding signal-to-noise ratios with different laser energies. It's found that the optimal energy is 40 mJ. In order to reduce the error, the ratio of the spectral line intensity of Mg 517.2 nm and the spectral integral from 516 nm to 520 nm is used as internal standard to establish the MgO mass fraction calibration curve. The carrelation coefficient of calibration curve is 0. 9959. Cycle inversion method is used to detect the accuracy of MgO quantitative analysis. The maximum relative error and the mean relative error are 5.9 % and 2.48 %. The detection limit of MgO mass fraction in cement obtained by LIBS is 0.51%.
出处 《中国激光》 EI CAS CSCD 北大核心 2014年第6期276-280,共5页 Chinese Journal of Lasers
基金 国家863计划(2009AA063002) 四川省科技支撑计划(2011GZ0249)
关键词 光谱 激光诱导击穿光谱 水泥 MGO 定标曲线 循环反演 相对偏差 spectroscopy laser-induced breakdown spectroscopy cement MgO calibration curve cycleinversion relative error
  • 相关文献

参考文献14

二级参考文献87

共引文献106

同被引文献91

  • 1郭水霞,王一夫,陈安.基于支持向量机回归模型的海量数据预测[J].计算机工程与应用,2007,43(5):12-14. 被引量:9
  • 2马德敏,马艳华,舒嵘,亓洪兴,何志平,吕刚,王建宇.激光诱导现场探测月壤成分的可行性分析[J].红外与激光工程,2007,36(5):656-658. 被引量:6
  • 3M S Cheri, S H Tavassoli. Quantitative analysis of toxic metals lead and cadmium in water jet by laser-induced breakdown spectroscopy [J]. Applied Optics, 2011, 50(9): 1227-1233.
  • 4Z Chen, H Li, M Liu, et al.. Fast and sensitive trace metal analysis in aqueous solutions by Laser-induced breakdown spectroscopy using wood slice substrates[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2008, 53(1): 64-68.
  • 5S Laville, M Sabsabi, F R Doueet. Multi elemental analysis of solidified mineral melt samples by laser induced breakdown spectroscopy coupled with a linear multivariate calibration[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2007, 62(12): 1557-1566.
  • 6G Bekefl. Radiation Processes in Plasmas[M]. New York: Wiley, 1966.
  • 7D A Cremers, L J Radziemski. Handbook of Laser-lnduced Breakdown Spectroscopy[M]. London: Cambridge University, 2006.
  • 8Rehse S J, Mohaidat Q I, Palchaudhuri S, et al.. Towards the clinical application of laser-induced breakdown spectroscopy for rapid pathogen diagnosis: The effect of mixed cultures and sample dilution on bacterial identification[J]. Applied Optics, 2010, 49(13): C27-C35.
  • 9Baudelet M, Smith B W. The first years of laser-induced breakdown spectroscopy[J]. Journal of Analytical Atomic Spectrometry, 2013, 28(5): 624-629.
  • 10Runge E F, Minck R W, Bryan F R. Spectrochemical analysis using source[J]. Spectrochimica Acta, 1964, 20(4): 733-736.

引证文献5

二级引证文献51

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部