期刊文献+

非自治Cahn-Hilliard方程的一致吸引子 被引量:6

Uniform Attractor for Nonautonomous Cahn-Hilliard Equation
下载PDF
导出
摘要 研究了非自治Cahn-Hilliard方程的长时间动力学行为,证明了该方程一致吸引子的存在性.利用含有两个参数的过程族来描述无穷维动力系统的方法,并借助Young不等式、Sololev嵌入定理、插值不等式及Gronwall不等式等技巧,证明了Cahn-Hilliard方程在空间L2(Ω)中存在一致吸引子. Long time dynamical behavior of nonautonomous Cahn-Hilliard equation was studied,and the existence of the uniform attractor of equation was proved.Using methods with two parameters to describe infinite dimensional dynamical systems,and with the help of Young inequality,Sololev embedding theorem,interpolation inequality and Gronwall inequality,the existence of uniform attractor of Cahn-Hilliard equation in L2 (Ω) space was proved.
出处 《郑州大学学报(理学版)》 CAS 北大核心 2014年第2期21-23,30,共4页 Journal of Zhengzhou University:Natural Science Edition
基金 陕西省自然科学基础研究计划项目 编号2012JM1012 延安大学研究生教育创新计划项目
关键词 非自治 CAHN-HILLIARD方程 一致吸引子 nonautonomous Cahn-Hilliard equation uniform attractor
  • 相关文献

参考文献8

二级参考文献51

  • 1刘式达,时少英,刘式适,梁福明.天气和气候之间的桥梁——分数阶导数[J].气象科技,2007,35(1):15-19. 被引量:15
  • 2谢永钦,杨莉,秦桂香.非线性弹性杆中的应变孤波[J].湖南大学学报(自然科学版),2007,34(5):58-61. 被引量:7
  • 3谢永钦,钟承奎.一类非线性发展方程整体强解的渐近行为[J].应用数学,2007,20(3):524-527. 被引量:3
  • 4郭大钧,黄春朝,梁方豪,等.实变函数与泛函分析[M].济南:山东大学出版社,2008:281-282.
  • 5BOGOLUBSKY I L.Some examples of inelastic solution interaction[J].Comput.Phys.Commun.,1997,13:149-155.
  • 6BORINI S,PATA V.Uniform attractors for a strongly damped wave equation with linear memory[J].Asymptot.Anal.,1999,20:263-277.
  • 7CHEPYZHOV V V,VISHK M I.Attractors for equations of mathematical physics[M] //Amer.Math.Soc..Provodence:Amer.Math.Soc.Colloq.Publ.,2002,49.
  • 8SUN Chunyou,CAO Daomin,DUAN Jinqiao.Non-autonomous wave dynamics with memory-asymptotic regularity and uniform attractor[J].Discrete Contin.Dyn.Syst.,2008,9(3):743-761.
  • 9XIE Yongqin,ZHONG Chengkui.The existence of global attractors for a class nonlinear evolution equation[J].J.Math.Anal.Appl.,2007,336:54-69.
  • 10庄蔚 杨桂通.孤波在弹性杆中的传播.应用数学与力学,1986,7(7):571-582.

共引文献20

同被引文献28

  • 1王素云,李德生,张艳红.Cahn-Hilliard方程强解的全局吸引子[J].兰州大学学报(自然科学版),2005,41(5):134-137. 被引量:9
  • 2Chun You SUN,Su Yun WANG,Cheng Kui ZHONG.Global Attractors for a Nonclassical Diffusion Equation[J].Acta Mathematica Sinica,English Series,2007,23(7):1271-1280. 被引量:20
  • 3Huang Q X, Li Y R, Zeng Y P. Random Attractors of Cahn-Hilliard Equations with an Additive Noise [J].西南大学学报:自然科学版,2007.29(11):1-6.
  • 4An LiKun.Global dynamics of the viscous Cahn-Hilliard equation[J].Journal of Lanzhou university (natural sciences),2000,36(5):17-23.
  • 5Teman R.Infinite dimensional Dynamical Systems in Mechanics and Physics[M].New York:Springer,1997.
  • 6Chepyzhov V V,Vishik M I.Attractors of non-autonomous dynamical systems and their dimension[J].J Math Pures Appl,1994,73:279-333.
  • 7Teman R. Infinite - dimensional dynamical systems in me-chanics and physics[M]. New York:Springer,1997.
  • 8Song Haitao,Wu Hongqing. Pullback attractors of nonauton-omous reaction - diffusion equations [ J]. Journal of Mathe-matical Analysis and Applications, 2007 ,325 (2) :1200 -1215.
  • 9Mam-Rubio P,Real J. On the relation between two differentconcepts of pullback attractors for non - autonomous dynami-cal systems [ J ]. Nonlinear Analysis,2009,71 ( 9 ) : 3956 -3963.
  • 10Garca-Luengo J,Mam-Rubio P,Real J. Pullback attractorsin V for non - autonomous 2D - Navier - Stokes equationsand their tempered behaviour [ J ]. Journal of Differential E-quations,2012,252(8) :4333 -4356.

引证文献6

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部