摘要
研究了非自治Cahn-Hilliard方程的长时间动力学行为,证明了该方程一致吸引子的存在性.利用含有两个参数的过程族来描述无穷维动力系统的方法,并借助Young不等式、Sololev嵌入定理、插值不等式及Gronwall不等式等技巧,证明了Cahn-Hilliard方程在空间L2(Ω)中存在一致吸引子.
Long time dynamical behavior of nonautonomous Cahn-Hilliard equation was studied,and the existence of the uniform attractor of equation was proved.Using methods with two parameters to describe infinite dimensional dynamical systems,and with the help of Young inequality,Sololev embedding theorem,interpolation inequality and Gronwall inequality,the existence of uniform attractor of Cahn-Hilliard equation in L2 (Ω) space was proved.
出处
《郑州大学学报(理学版)》
CAS
北大核心
2014年第2期21-23,30,共4页
Journal of Zhengzhou University:Natural Science Edition
基金
陕西省自然科学基础研究计划项目
编号2012JM1012
延安大学研究生教育创新计划项目