期刊文献+

含外力项时变系数KdV方程与时变系数耦合KdV方程组的孤子解 被引量:1

SOLITON SOLUTIONS OF KDV EQUATION AND A COUPLED KDV EQUATION WITH TIME-DEPENDENT COEFFICIENTS AND FORCING TERM
下载PDF
导出
摘要 应用孤子拟解法研究了含外力项时变系数KdV方程与一类时变系数耦合KdV方程组.首先将方程经过变量代换转换为齐次方程,然后将孤子解假设为双曲正割函数的形式带入方程或方程组,最后借助Maple软件完成复杂的计算来确定假设的孤子解的待定系数,从而得到孤子解存在的条件及其孤子解.结果显示:孤子拟解法计算简便且能得到方程的亮孤子解. This paper studied the KdV equation with time-dependent coefficients and forcing term and the coupled KdV equations with time-dependent coefficients by using soliton ansaze.Firstly,the equation was converted to homogeneous equation by using a variable transformation.Then,by assuming the soliton solutions to be the form of sech function,and with the help of Maple software,the complicated and tedious calculations were performed,and the conditions of existence of solitons and soliton solutions were obtained.The results show that the calculation of soliton ansaze is simple and can obtain bright soliton solutions.
出处 《动力学与控制学报》 2014年第2期115-118,共4页 Journal of Dynamics and Control
基金 国家自然科学基金资助项目(11162020) 云南省中青年学术与技术带头人计划项目(2008PY059)~~
关键词 KDV方程 耦合KDV方程组 变系数 孤子拟解法 KdV equation coupled KdV equations time-dependent coefficients soliton ansatz
  • 相关文献

参考文献11

  • 1Hirota R. Exact solutions of the Korteweg-de Viries equa- tion for multiple collisions of solitons. Physics Review Let- ters, 1971,27:1192 - 1194.
  • 2Wahlquist H D, Estabrook F B. Backlund transformation for solitons of the Korteweg-de Vries equation. Physical Re- view Letters, 1973, 31 : 1386 - 1390.
  • 3Wang M L. Application of homogeneous balance method to exact solutions of nonlinear equations in mathematical phys- ics. Physics Letters A, 1996, A2:16 -67.
  • 4Drazin P G, Johnson R S. Solitions: an introduction. Cam- bridge: Cambridge University Press, 1989.
  • 5Triki H, Wazwaz A M. Bright and dark solutions for a K (m,n) equation with t-dependent coefficient. Physics Let- ters A, 2009, 373:2162 -2165.
  • 6Wazwaz A M. A study on KdV and Gardener equations with time-dependent cofficents and forcing terms. Applied Mathematics and Computation, 2010, 217:2277-2281.
  • 7Wazwaz A M, WazwazA M. Solition solutions for a general- ized KdV and BBM equations with time-dependent coeffi- cients. Communications in Nonlinear Science Numerical Simulation, 2011, 16:1122 -1126.
  • 8Fan E G. Auto-Baieklund transformation and similarity re- ductions for general variable coefficient KdV equations. Physics Letters A, 2002,294 : 26 - 30.
  • 9Hirota R, Satsuma J. Solition solutions of a coupled Korte- weg-de Viries equation. Physics Letters A, 1981, 85:407 - 408.
  • 10Zhou Y B, Wang M L, Wang Y M. Periodic wave solu- tions to a coupled KdV equations with variable coeffi- cients. Physics Letters A, 2003, 308:31 -36.

同被引文献1

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部