期刊文献+

基于EMD与1D全变分的地震信号去噪

A De-noising Technology of Seismic Signal Based on EMD and 1D Total Variation
下载PDF
导出
摘要 经验模态分解(Empirical Mode Decomposition,EMD)是一种信号的时频分析方法,该方法在不需要先验知识的条件下,可以将非平稳、非线性信号,依据信号的特征,自适应的分解为多个本征模态函数(Intrinsic Mode Function,IMF)之和,得到高的频率分辨率。然而,一般的去噪方法是将所选择的高频IMF部分取不同的阈值进行滤波或者是直接置为零重构后实现信号的去噪,很显然这会造成高频部分有用信号的损失。1D全变分(Total Variation,TV)是一种有效的信号去噪方法,能够非常好的保护信号边缘信息,但有时也会把噪声当作边缘信息,出现虚假边缘现象。因此,基于EMD和1D-TV的优点提出了一种新的去噪方法,根据对实际金属矿床地震信号处理的结果表明,该算法能有效的消除地震信号中的噪声,并能有效保护地震信号边缘构造信息。 Empirical Mode Decomposition(EMD) is a kind of time-frequency analysis method of signal. It does not require a priori knowledge,and can self-adaptively decompose non-stationary and nonlinear signals into multi-scale Intrinsic Mode Functions(IFM) in terms of the nature of the signals,which leads to the high frequency resolution. However,common de-noising method filters the high frequency part chose from IMF from different threshold or realizes signal de-noising by setting it to zero directly and refactoring it,which will lead the obvious loss of useful signal of high frequency part. 1D Total Variation(TV),is a effective signal de-noising method,can preserve edges data better,but sometimes it may take the noise as edge information,so as to appear the false edge. Here,We construct a new noise attenuation algorithm by combining EMD with 1D total variation de-noising method,the process result of the metal deposit seismic signal shows,the algorithm can effectively separate seismic signals form random noise and keep the edge structure information of the seismic data well.
出处 《四川理工学院学报(自然科学版)》 CAS 2014年第3期29-33,共5页 Journal of Sichuan University of Science & Engineering(Natural Science Edition)
基金 国家863计划项目(2008AA121103) 中国地质调查局项目(1212011120226)
关键词 1D全变分 EMD 地震信号去噪 1D total variation EMD seismic signal de-noising
  • 相关文献

参考文献14

  • 1(关)L科恩.时频分析理论及应用[M].白居宪,译.西安:西安交通大学出版社,1998.
  • 2杨凯,刘伟.基于改进EMD的地震信号去噪[J].西南石油大学学报(自然科学版),2012,34(4):75-82. 被引量:10
  • 3Kamhanoglu F I,Bayram I,Van D V D.A signal process- ing approach to generalized 1 -D total variation[J].Signal Processing, IEEE Transactions on, 2011,59 ( 11 ): 5265- 5274.
  • 4Condat L. A direct algorithm for 1D total variation denoising[J]. IEEE Signal Proc. Letters, 2013,20 ( 11 ): 1054-1057.
  • 5史恒,李桂林,王伟,历玉英,高星.基于总体经验模式分解的地震信号随机噪声消除[J].地球物理学进展,2011,26(1):71-78. 被引量:15
  • 6Huang N E,Shen Z, Long S R,et al.The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J].Proceedings of The Royal Society A Mathematical Physical and Engi- neering Sciences,1998,454 (1971 ):903-995.
  • 7Rudin L l, Osher S,Fatemi E.Nonlinear total variation based noise removal algorithms[J].Physica D:Nonlinear Phenomena,1992,60(1 ):259-268.
  • 8Chan T F, Golub G,Mulet P. A nonlinear primal-dual method for total variation-based image restoration[J].SI- AM J.Sci.Comp.,1999,20(6): 1964-1977.
  • 9Chambolle A,Lions P L.Image recovery via total varia- tion minimization and related problems[J]. NumerischeMathematik,1997,76(2): 167-188.
  • 10Little M A,Jones N S.Sparse Bayesian step-filtering for high-throughput analysis of molecular machine dynam- ics[C]//Proceedings of the IEEE International Confer- enee on Acoustics, Speech, and Signal Processing, Dal- las,Texas,USA,March 14-19,2010:4162-4165.

二级参考文献55

共引文献38

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部