期刊文献+

带有Bessel位势的积分方程正解的对称性和正则性(英文)

Symmetryand regularityof positive solutions to some system associated with Bessel potentials
下载PDF
导出
摘要 考虑带有贝塞尔位势的积分方程的正解的对称性和正则性,通过动平面方法证明正解是径向对称的.应用正则性提升引理,将正解先提升至L∞,再提升至Lipschitz连续. The symmetry and regularity of positive solutions to an integral system involving Bessel potentials are con-cerned in this paper .By using the method of moving planes ,it is proved that the positive solutions are radial sym-metric .By using two regularity lifting lemmas ,the regularity for integrable solutions are studied .It is firstly lifted to L∞ and then to Lipschitz continuous .
作者 陈武
出处 《江苏师范大学学报(自然科学版)》 CAS 2014年第2期35-42,共8页 Journal of Jiangsu Normal University:Natural Science Edition
基金 supported by the Postgraduate Innovation Project of Jiangsu Province(CXLX12-0981) the Postgraduate Innovation Project of Jiangsu Normal University(2012YYB097)
关键词 正则性提升 Bessel位势 径向对称性 L∞估计 LIPSCHITZ 连续 regularity lifting Bessel potential radial symmetry L∞ estimate Lipschitz continuous
  • 相关文献

参考文献2

二级参考文献33

  • 1邓东皋,颜立新.Fractional integration associated with second order divergence operators on R^n[J].Science China Mathematics,2003,46(3):355-363. 被引量:3
  • 2Chen W, Jin C, Li C. Weighted Hardy-Littlewood-Sobolev inequalities and systems of integral equations. Discrete and Continuous Dynamical Systems, 2005, Supplement Volume: 164-172.
  • 3Chen W, Li C. Methods on Nolinear Elliptic Equation. AIMS, 2010.
  • 4Chen W, Li C. Classification of solutions of some nonlinear elliptic equations. Duke Math J, 1991, 63: 615-622.
  • 5Chen W, Li C. Regularity of solutions fo a system of integral equations. Comm Pure Appl Anal, 2005, 4: 1-8.
  • 6Chen W, Li C. The best constant in some weighted Hardy-Littlewood-Sobolev inequality. Proc AmerMath Soc, 2008, 136:955-962.
  • 7Chen W, Li C, Ou B. Classification of solutions for an integral equation. Comm Pure Appl Math, 2006, 59:330-343.
  • 8Chen W, Li C, Ou B. Classification of solutions for a system of integral equations. Comm Partial Differ Equ, 2005, 30:59-65.
  • 9Grafakos L. Classical and Modern Fourier Analysis. New York: Pearson Education, Inc, 2004.
  • 10Elgart A, Schlein B. Meanfield dynamics of boson stars. Comm Pure Appl Math, 2007, 60:500-545.

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部